Lycée El Amel Fouchana	Devoir de contrôle n°1		
Prof : B. Zouhaier	3 ème Info	Novembre 2016	Durée :2heures

Exercice n°1(4 points):

A/x désigne un réel . Recopier et relier par une flèche chaque expression de la colonne A à l'expression qui lui est égale de la colonne B

h	A
	$\cos(\pi - x)$
	$1-cos^2x$
	$\cos(x+\pi)$
	$\sin(x+\frac{\pi}{2})$
	$\sin(\pi-x)$

B
sin²x
sin x
−sin x
cos x
−cos x

B/Cocher la réponse exacte en justifiant la réponse

- 1) Si f est croissante sur [0,2] telle que f(2) = 0 alors pour tout $x \in [0,2]$: a) $f(x) \ge 0$; b) $f(x) \le 0$; c) $f(x) \ge 2$
- 2) L'ensemble des solutions dans $[0, \pi]$ de l'équation $2\sin x = 1$ est :
 - a) $\left\{\frac{\pi}{2}\right\}$

- b) $\left\{\frac{\pi}{\epsilon}\right\}$
- ; c) $\left\{\frac{\pi}{6}; \frac{5\pi}{6}\right\}$
- 3) Si f est une fonction définie sur IR telle que f(a) f(b) = 4(b a) pour tous réels a et b alors :
 - a)f est croissante sur IR
- b)f est décroissante sur IR ; c)f est constante sur IR

Exercice n°2(5points):

Soit (U_n) la suite arithmétique de raison (-4) telle que $U_4 = -14$

- 1) a)Calculer U₂₀
 - b) Montrer que pour tout $n \in IN$, on $a: U_n = 2 4n$ c)Déterminer n sachant que $U_n = -98$
- 2) Calculer la somme S = 14 18 98
- 3) On considère la somme $S_n = U_1 + U_2 + \dots + U_n$ a)Exprimer S_n en fonction de n
 - b) Déterminer n sachant que S_n = 288

Exercice n°3 (5points):

On considère la suite (u_n) définie sur IN par : $\begin{cases} u_0 = 6 \\ u_{n+1} = \frac{1}{3}u_n + 2 \end{cases}$

1) Calculer u_1 et u_2 . En déduire que u est ni arithmétique ni géométrique.

- 2) Soit la suite(v_n) définie sur IN par : $v_n = u_n 3$
 - a) Montrer que v est une suite géométrique de raison $=\frac{1}{3}$...
 - b) Exprimer v_n puis u_n en fonction de n.
 - c) Calculer $\lim_{n\to+\infty} v_n$ puis $\lim_{n\to+\infty} u_n$
- 3) Soit $S_n = v_0 + v_1 + v_2 + \dots + v_{n-1}$ et $S'_n = u_0 + u_1 + \dots + u_{n-1}$ avec $n \ge 1$ Exprimer S_n puis S'_n en fonction de n

Exercice n°4 (6points):

Soit f la fonction définie par $f(x) = \frac{ax}{x^2 - 1}$ où a étant un réel donné et (\mathcal{C}) sa courbe représentative dans un repère orthonormé $(0, \vec{l}, \vec{j})$

- 1) Déterminer l'ensemble de définition D de f
- 2) Sachant que (\mathcal{C}) passe par le point $A(\sqrt{2}, 2\sqrt{2})$. Montrer que a=2
- 3) Déterminer les antécédents de $\frac{4}{3}$ par f
- 4) a) Vérifier que pour tout $x \in D$ $f(x) = \frac{1}{x-1} + \frac{1}{x+1}$
 - b) Déduire le sens de variation de f sur $\bar{]}1, +\infty[$
- 5) a)Montrer que pour tous réels a et b de $D: f(a) f(b) = \frac{2(b-a)-(ab+1)}{(a^2-1)(b^2-1)}$ b)En déduire que f est strictement décroissante sur]-1,1[

