

Chimie: On donne les masses molaires atomiques en g.mol⁻¹ M_H =1 M_O =16 et M_C =12

Exercice n°:1

On réalise la combustion complète d'une masse m d'alcool A, il se forme une masse m_1 =17.6g de dioxyde de carbone et une masse m_2 =9g d'eau

- 1- Ecrire en générale l'équation de la réaction de combustion.
- 2- Déterminer la formule brute de cet alcool.
- 3- Donner les formules semi développées de quatre isomères de cet alcool (A₁, A₂, A₃, A₄).
- 4- Préciser la classe et le nom de chaque isomère.
- 5- L'oxydation ménagée, de l'un de ces isomères à chaine ramifiée, se fait en deux étapes pour donner un corps B puis un autre C.
 - **a-** Préciser la classe et le nom de cet alcool.
 - **b-** Donner les familles des corps B et C.
 - c- En utilisant les formules semi développées, écrire les équations de réactions d'oxydation.
- **6-** Comment peut-on identifier expérimentalement les corps B et C.
- 7- L'un de quatre isomères s'oxyde pour donner un composé D qui ne réagit pas avec les réactifs de shiff.
 - **a-** Préciser la classe et le nom de cet alcool.
 - **b-** Donner la famille de corps D.
 - **c-** En utilisant les formules semi développées, écrire l'équation de la réaction d'oxydation.

Exercice n°: 2

Compéter les équations des réactions suivantes :

Physique:

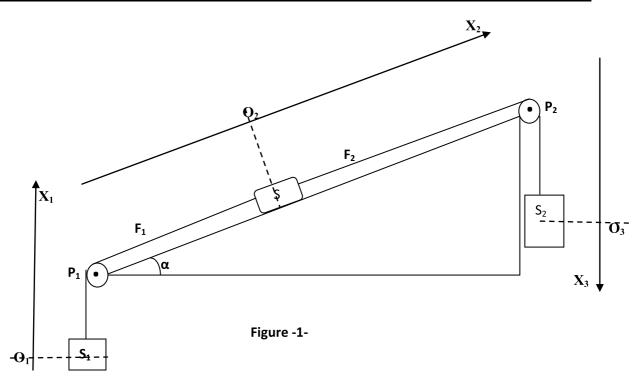
Exercice n°: 1 On prend
$$\|g\| = 10 \text{m.s}^{-2}$$

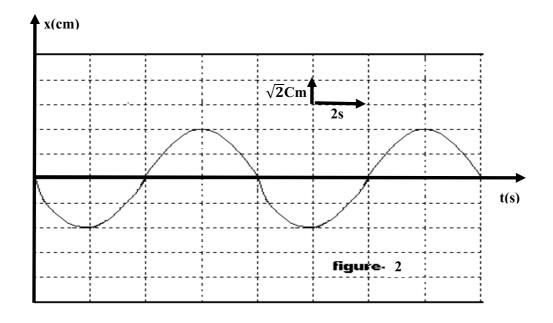
Un solide S_1 de masse m=6kg peut déplacer sur un plan incliné d'un angle $\alpha=30^{\circ}$ par rapport à l'horizontale. Le solide est entrainé dans son mouvement par deux solides S_1 de masse $m_1=3kg$ et S_2 de masse $m_2=11kg$,

attachés au solide S par deux fils F₁ etF₂ de masses négligeables et inextensibles qui passent sur les gorges de deux polies P₁ et P₂ de masses négligeables. (Voir figure -1- de la page 3 à rende avec la copie).

- 1- Représenter, sur la figure -1-, les forces exercées sur le système $(S, S_1 \text{ et } S_2)$.
- 2- A la date t=0s le système est abandonné à lui-même sans vitesse initiale. En appliquant la relation fondamentale de la dynamique pour chaque solide, déterminer les expressions de :
 - **a-** Tension du fil F_1 | T_1 | en fonction de m_1 et a_1 (l'accélération de S_1).
 - **b-** Tension du fil $F_2 \parallel T_2 \parallel$ en fonction de m_2 et a_2 (l'accélération de S_2).
 - **c-** L'accélération a du solide S en fonction de $\|T_1\|$, $\|T_2\|$, m, g et α .
- 3- Calculer a en précisant la nature de mouvement de S.
- **4-** Donner le sens du mouvement.
- 5- Calculer les valeurs des tensions $\|T_1\|$ et $\|T_2\|$.
- 6- a- Donner la loi horaire du mouvement de S et déduire la distance parcourue par S pendant $\Delta t=2s$.
 - **b-** Déduire la valeur de la vitesse de S à l'instant $t_1 = 2s$.
- 7- A la date $t_1 = 2s$, on coupe le fil F_2 reliant le solide S_2 au solide S.
 - **a-** Préciser la nature du mouvement du solide S₂.
 - **b-** Déduire la loi horaire du mouvement de S₂, sachant à l'origine des dates t=t₁, la vitesse de S₂ est $\|V_{02}\| = 5 \text{m.s}^{-1}$
 - c- Déterminer la valeur de la vitesse de S2, lorsqu'il atteint le sol, sachant la distance de parcours de S2

Exercice n°: 2


L'enregistrement mécanique d'un mouvement rectiligne sinusoïdal d'un mobile M donne le graphe de la figure-2- de la page -3-:


- 1- Déterminer graphiquement :
- a- l'amplitude du mouvement x_m
- **b**-la période T en déduire la fréquence N.
- **2- a-** Déterminer la loi horaire x(t) du mouvement.
- **b-** Déduire l'expression de la vitesse v(t).
- **c-** Déterminer la différence de phase $\Delta \varphi = \varphi_x \varphi_v$
- **3- a-** Montrer que : $(v^2/\omega^2) + x^2 = x_m^2$
- b- Déterminer la vitesse du mobile au passage
- par le point $x = 2\sqrt{2}$ cm.
- 4- Sachant que l'accélération s'écrit $a(t) = -\omega^2 \cdot x(t)$. préciser à t = 5 s, le signe de a(t) et v(t)
- 5- Représenter, sur la figure-2-, v(t) et a(t).

Feuille à rendre avec la copie

<u>Nom :......N° :.....</u>

