REPUBLIQUE TUNISIENNE	Epreuve : MATHEMATIQUES		
MINISTERE DE L'EDUCATION	Dureé : 2 H		
Examen BAC BLANC 2017 / 2018	Prof : M ^r Darwaz		
Section: 4 sport 3	Lyceé Elomrane		

Exercice n°1: (7 points)

Une urne contient huit jetons indiscernables au toucher répartis comme suit :

- Quatre blancs numérotés 1; 1; 2; 2
- Trois noirs numérotés 1;1;2
- Un jaune numéroté -1

Une épreuve consiste à tirer simultanément et au hasard deux jetons de l'urne.

- 1) Calculer la probabilité de chacun des évènements suivants :
 - A : « Obtenir deux jetons de même couleur ».
 - B: « Obtenir deux jetons dont le produit des numéros est négatif ».
- 2) Montrer que $p(A \cup B) = \frac{4}{7}$
 - Soit X l'aléa numérique qui à chaque épreuve associe le produit des deux numéros inscrits sur les jetons tirés.
 - a- Vérifier que $p(X = -1) = \frac{1}{7}$.
 - b- Compléter le tableau suivant donnant la loi de probabilité de X.

\mathbf{X}_{i}	-2	-1	1	2	4
p(X=X _i)		1			
		7			1

c- Calculer l'espérance mathématique de X.

Exercice n°2: (6 points)

Soit (V_n) la suite géométrique de premier terme $V_0 = \frac{1}{6}$ et de raison $\frac{1}{4}$.

- 1) a) Exprimer V_n en fonction de n .
 - b) Calculer $\lim_{n\to+\infty} V_n$.
- 2) Soit (U_n) la suite définie sur \mathbb{N} par : $\begin{cases} U_0 = -\frac{23}{6} \\ U_{n+1} = \frac{1}{4}U_n 3 \text{ pour tout } n \in \mathbb{N}. \end{cases}$
 - a) Montrer par récurrence que pour tout $n \in \mathbb{N}$, $U_n > -4$.

- c) En déduire que la suite (U_n) est décroissante et qu'elle est convergente.
- 3) a) Montrer par récurrence que pour tout $n \in \mathbb{N}$, $V_n U_n = 4$.
 - b) En déduire $\lim_{n\to+\infty} U_n$.

Exercice n°3: (7 points)

Soit f la fonction définie sur] 0 , + ∞ [, par : f(x) = log (x) $-\frac{3}{x}$. on désigne par (C) sa courbe représentative dans un repére orthonormé ($(0,\vec{t},\vec{j})$.

- 1) Déterminer $\lim_{x\to 0^+} f(x)$. Interpreter graphiquement le résultat.
- 2) a) Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$
 - b) En déduire la nature de la branche infinie de la courbe (C) au voisinage + ∞
- 3) a) Montrer que pour tout $x \in (0, +\infty)$ [; $f'(x) = \frac{x+3}{x^2}$
 - b) dresser alors le tableau de variation de f
- 4) a) Montrer que l'équation : f (x) = 0 ; admet une unique solution $\alpha \in \]0$, + $\infty \ [$.
 - b) Justifier que : $2.8 < \alpha < 2.9$.
- 5) Tracer la courbe (C).
- 6) Soit F la fonction définie sur] 0 , + ∞ [, par F (x) = (x 3) log(x) x
 - a) Calculer F(3).
 - b) Montrer que F est une primitive de f sur]0, + ∞ [.
 - c) En déduire A l'aire de la partie limitée par la courbe (C), l'axe des abscisses et les droites d'équations : $x = \alpha$ et x = 3.