<u>Chimie:</u> (7 points) <u>Exercice 1 :</u> (3 points)

Q	Corrigé	Barème
1-	OH- LK+	3 x 0,25
2-a-	Il s'agit du potassium. $K^{+}_{(aq)} + e^{-} \rightarrow K_{(sd)}$	0,25 + 0,5
2 -b	Le disque constitue la cathode car il est le siège d'une réduction.	2x0,25
3-a-	$4K^{+}_{(aq)} + 4 OH^{-}_{(aq)} \rightarrow 4 K_{(sd)} + O_{2(g)} + 2H_{2}O_{(1)}$	0,5
3-b-	Il s'agit d'une transformation imposée car c'est la batterie qui impose le sens de déplacement des électrons	2x0,25

Exercice 2: (4 points)

Q	Corrigé	Barème
1-a-	Le mélange réactionnel est basique car pH _E est supérieur à 7.	2 x 0,25
1-b-	Pour un dosage fort-fort pH _E est égal à 7.	0,5
2 -a	C'est l'état d'un mélange obtenu lorsque les quantités de matière d'acide et de base sont en proportions stœchiométriques.	0,5
2-b-	$\mathbf{C}_{A} = \frac{\mathbf{C}_{B}\mathbf{V}_{BE}}{\mathbf{V}_{A}} \text{ A.N C}_{A} = 0.05 \text{ mol.L}^{-1}.$	2x0, 25
3-a-	À la demi-équivalence, on a : pH= pKa. pka= 4,2.	2x0,25
3-b-	b- Ka= $10^{-p\text{Ka}}$ =6,3 10^{-5} . L'acide AH, est donc l'acide benzoïque.	0,5
3-с-	\mathbf{c} - $\mathbf{C}_5\mathbf{H}_6\mathbf{COOH} + \mathbf{H}_2\mathbf{O} \leftrightarrows \mathbf{C}_5\mathbf{H}_6\mathbf{COO}^- + \mathbf{H}_3\mathbf{O}^+$	0,5
4-	Le phénolphtaléine est le plus approprié car le pH _E appartient à sa zone de virage.	0,5

Physique (13 points)

Exercice 1(5 points)

Q	Corrigé	Barème
1-	Expérience 1 $u_{AB}(t) = r.i + L \frac{di}{dt}$. En régime permanent, $U_{AB} = R$. I.	2x0,25
2-	$r = \frac{U_{AB}}{I}$. A.N: $r = 14 \Omega$.	0,5
1-	Régime transitoire Régime permanent t (ms)	2x0,25
2-a-	$\tau = 0.5 \text{ ms.}$	2x0,25
2-b-	$\tau = \frac{L}{R+r}$, donc L = $\tau(R+r)$. A.N: L = 20mH.	2 x0,25
3-	En régime permanent on a : E = (R + r). I_0 . A.N : E = 40 x 0,1 = 4V.	2x0,25
1-	Expérience3 UR(t) R (L,r) C YA	0,5
2-a-	La courbe correspondante à $u_R(t)$ et celle correspondante à $u(t)$ sont en phase.	0,5
2-b-	Résonance d'intensité : $N_1=N_0=\frac{1}{2\pi\sqrt{LC}}$ d'où $C=\frac{1}{4\pi^2LN_1^2}$ A.N : $C=0,48\mu F$.	2x0,25
2-c-	$I = \frac{U_m}{(R+r)\sqrt{2}}$ A.N: $I = 0.07A$.	2 x 0, 25

Exercice 2: (8 points)

Q	Corrigé	Barème
I-1-a-	Charge du condensateur.	0, 25
1-b	$\mathbf{u}_{c}(\mathbf{t})$	0, 25
1- c-	$\frac{d\mathbf{u}_{c}}{dt} = \frac{1}{R_{1}\mathbf{C}} \cdot \mathbf{E} \cdot \mathbf{e}^{\frac{-t}{R_{1}\mathbf{C}}}$ $E - E \cdot \mathbf{e}^{\frac{-t}{R_{1}\mathbf{C}}} + R_{1}C \cdot \frac{1}{R_{1}\mathbf{C}} \cdot E \cdot \mathbf{e}^{\frac{-t}{R_{1}\mathbf{C}}} = E.$	0,5
2-a	T = 3,2ms donc N = $\frac{1}{T}$. A.N: N= 312,5 Hz. E = 5,5V.	0,5 + 0, 25
2-b	Pour $t = \tau_1$, on a : $u_c = 0.63x 5.5 \approx 3.5V$. D'après la courbe $\tau_1 = 2ms$. $\tau_1 = R_1 C \text{ d'où } C = \frac{\tau_1}{R_1}. \text{ A.N : } C = 2.10^{-8} \text{ F.}$	2x 0, 25 2x 0,25
3-	$u_c(\theta_1) = 0.99$ E, ce qui donne θ_1 = 4.6 τ_1 .	0, 5
4-a	θ_2 = 4,6 τ_2 = 4,6 (3 τ_1) = 2,76 ms. Or $\frac{T_1}{2}$ = 1,6 ms < θ_2 . Le condensateur n'atteint pas sa charge maximale.	0, 25
4-b	Le condensateur se charge complètement si : $\frac{T_2}{2}=\frac{1}{2N_2}\geq\theta_2$ $\Rightarrow N_2\leq\frac{1}{2\theta_2}$. Soit N_2 =181Hz.	0,5
II-1-a	Filtre passif. Il est constitué d'éléments passifs.	2 x 0,25
1-b-	$\begin{split} & Z_c = \frac{1}{2\pi NC}. \\ & \Rightarrow \text{Pour les hautes fréquences, } Z_c \to 0. \text{ Alors le condensateur se comporte comme} \\ & \text{un fil. D'où } u_E = u_S. \\ & \Rightarrow \text{Pour les basses fréquences, } Zc \to +\infty \text{. Alors le condensateur se comporte} \\ & \text{comme un interrupteur ouvert. D'où } u_S = 0. \text{ Il s'agit d'un filtre passehaut.} \end{split}$	0,5

(Suite de l'exercice 2)

Q	Corrigé	Barème
1-c-	Pour un tel filtre, la tension de sortie est toujours en avance de phase par rapport à la tension d'entrée. Donc la courbe (1) correspond à $u_s(t)$.	0, 25
2-a-	la tension d'entrée. Donc la courbe (1) correspond à $u_s(t)$. $\Delta \phi = \phi_s - \phi_E = \frac{2 \pi}{T_3} \cdot \frac{T_3}{8} = \frac{\pi}{4} \text{rad. N}_3 \text{ est bien la fréquence de coupure du filtre.}$ $N_3 = 800 \text{Hz.}$	0,5 + 0, 25
2- b-	Pour N = N ₃ , T = $\frac{T_0}{\sqrt{2}} = \frac{1}{\sqrt{2}}$.	2 x 0, 25
	D'où $U_{sm} = \frac{U_{Em}}{\sqrt{2}}$. A.N: $U_{sm} = 4,6V$.	2 x 0, 25
3-a-	$T = \frac{1}{\sqrt{1 + \frac{1}{(2\pi NR_2C)^2}}}$ correspond à un filtre passe haut, en effet $\Rightarrow \text{Pour les hautes fréquences, } T \rightarrow T_0 = .1$	2x 0, 25
	\Rightarrow Pour les basses fréquences, T \rightarrow 0.	
3-b-	$T = \frac{1}{\sqrt{2}}$. D'où $N_3 = \frac{1}{2\pi R_2 C}$.	2x 0, 25
3-c-	$\mathbf{C} = \frac{1}{2\pi R_2 N_3}. A.N : \mathbf{C} \approx 20 \text{nF}.$	0,5