Durée: 4 heures

EXERCICE

1. α étant un arc compris entre 0 et π (unité : le radian), on donne :

$$\cos \alpha = \frac{\sqrt{5} - 1}{4}$$

Calculer $\cos 2\alpha$ et $\cos 4\alpha$. En déduire α .

2. x étant compris entre 0 et 2π , résoudre l'inéquation

$$\sqrt{3+2\cos x} > 2\sin x$$

PROBLÈME

Partie A

Dans le plan rapporté à un repère orthonormé x'Ox, y'Oy, on considère la transformation ponctuelle S qui au point M de coordonnées (x; y) fait correspondre le point M' de coordonnées (x'; y') telles que :

$$\begin{cases} x' = -\frac{x}{2} + \frac{\sqrt{3}}{2}y \\ y' = \frac{\sqrt{3}}{2}x + \frac{y}{2} \end{cases}$$

- 1. Montrer que cette transformation est involutive.
- **2.** Déterminer l'ensemble (Δ) des points doubles ainsi que l'ensemble des points I, milieux de MM'.
- **3.** Montrer que MM' reste parallèle à une direction fixe, que l'on comparera à la direction de (Δ) .
- **4.** Déduire de ce qui précède que *S* est une transformation ponctuelle simple, que l'on définira géométriquement.
- **5.** Tracer la courbe (Γ) ensemble des points M(x; y) du plan dont les coordonnées vérifient la relation :

$$y = x\frac{\sqrt{3}}{3} + \frac{1}{x}$$

Quelle est la transformée de (Γ) par S?

Partie B

On considère maintenant la transformation T qui au point M(x; y), fait correspondre le point M'(x'; y') tel que :

$$\begin{cases} x' = \frac{\sqrt{2}}{2}x - \frac{\sqrt{2}}{2}y \\ y' = \frac{\sqrt{2}}{2}x + \frac{\sqrt{2}}{2}y \end{cases}$$

Terminale C A. P. M. E. P.

- 1. Montrer que T a un seul point double, dont on calculera les coordonnées.
- **2.** Comparer les longueurs de OM et de OM'.
- **3.** θ étant un nombre réel, quel est le transformé du point M de coordonnées $(\sin\theta,\cos\theta)$
- **4.** Déduire de ce qui précède que S est un déplacement, que l'on caractérisera.

Partie C

Par des considérations géométriques, déterminer les transformations composées $S \circ T$ et $T \circ S$.