

EXERCICE 1

Un nombre entier naturel N s'écrit $\overline{abc0}$ en base 5, et \overline{abc} en base 12, où a, b et c sont des entiers tels que

$$0 < a < 5$$
, $0 \le b < 5$, $0 \le c < 5$.

Déterminer les entiers *a*, *b*, *c* et *N*. (On pourra utiliser la congruence modulo 4).

EXERCICE 2

Résoudre dans C l'équation :

$$(-4-2i)z^2 + (7-i)z + 1 + 3i = 0$$

Déterminer la partie réelle et la partie imaginaire de chaque racine.

PROBLÈME

Soit E l'ensemble des fonctions numériques définies sur l'intervalle]-2; +2[. On rappelle que E, muni de l'addition, et de la multiplication externe par les réels, ainsi définies :

$$\begin{array}{ccccc} f+g: & x & \longmapsto & f(x)+g(x) & \text{pour tout} & (f,\,g) \in E \times E \\ \lambda f: & x & \longmapsto & \lambda(x) & \text{pour tout} & (\lambda,\,f) \in \mathbb{R} \times E \end{array}$$

est un espace vectoriel sur \mathbb{R} .

1. Soit F le sous-espace vectoriel de E engendré par les deux fonctions $f_1,\,f_2,\,$ ainsi définies :

$$f_1(x) = \frac{x}{\sqrt{4 - x^2}}, \quad f_2(x) = \frac{1}{\sqrt{4 - x^2}}$$

pour tout
$$x \in]-2$$
; +2[.

Montrez que $(f_1; f_2)$ est une base de F.

2. Soit P le plan vectoriel euclidien orienté et soit $(\vec{i}; \vec{j})$ une base orthonormée directe de P.

On désigne par T l'ensemble des transformations orthogonales de P, dont la matrice $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$, relativement à la base $\begin{pmatrix} \overrightarrow{i} \ ; \ \overrightarrow{j} \end{pmatrix}$, vérifie $(a-b)^2=1$.

Déterminer tous les éléments de T (préciser les angles de rotation, et les axes de symétries).

3. Soit φ l'endomorphisme de F, dont la matrice par rapport à la base $(f_1; f_2)$ est la matrice A, représentant la rotation vectorielle d'angle $+\frac{\pi}{2}$ dans P, par rapport à la base $(\vec{l}; \vec{l})$.

Déterminer l'image par φ de la fonction $g = 2f_1 + f_2$.

Étudier la fonction numérique : $x \mapsto f(x) = \sqrt{\frac{2-x}{2+x}}$

Tracer sa courbe représentative dans un repère orthonormé. En déduire le tracé de la courbe (*C*) d'équation

Le baccalauréat de 1971 A. P. M. E. P.

$$x(y^2+1)+2(y^2-1)=0.$$

Etudier la limite de $\frac{f'x}{x-2}$ lorsque x tend vers 2. La courbe ($\mathscr C$) possède-t-elle une tangente au point (2; 0)?

4. Écrire l'équation de la tangente D à la courbe (\mathscr{C}), au point d'abscisse x = 1, et d'ordonnée y > 0. Déterminer l'intersection de (\mathscr{C}) et de la droite D. Préciser la position de la courbe (\mathscr{C}) par rapport à la droite D.

Antilles–Guyane 2 juin 1971