EXERCICE 1 3 POINTS

Soit l'équation :

$$e^x - 2e^{-x} = m \quad (m \in \mathbb{R})$$

(e est la base des logarithmes népériens)

- **1.** Exprimer x en fonction de m.
- **2.** Pour $m = \frac{1}{2}$, calculer la valeur approchée de x avec la précision donnée par la table de logarithmes.

EXERCICE 2 5 POINTS

 \mathscr{P} est le plan affine euclidien rapporté au repère orthonormé $(0, \overrightarrow{\iota}, \overrightarrow{\jmath})$. On considère les applications :

$$f' \colon \begin{array}{ccc} \mathscr{P} & \to \mathscr{P} & & & \\ M & \longmapsto & M' & & f'' \colon & M & \longmapsto & M'" \end{array}$$

où M, M' et M'' ont respectivement pour affixes z, z' et z'' avec :

$$z' = (2-2i)z+1$$

$$z'' = (2+2i)\overline{z}+1$$

- 1. Reconnaître f' et f'' et trouver leurs éléments canoniques.
- **2.** Calculer $\overline{z'}$; comparer $\overline{z'}$ et z'', en déduire que $f'' = s \circ f'$ où s désigne la symétrie orthogonale ayant pour axe la droite de repère $(O, \overrightarrow{\iota})$.
- **3. a.** Construire la courbe (Γ) d'équation $4x^2 4y^2 = 1$.
 - **b.** Déterminer les équations cartésiennes de $f'(\Gamma)$ et $f''(\Gamma)$.

PROBLÈME 12 POINTS

Soit la fonction $f: \begin{vmatrix} \mathbb{R} & \to & \mathbb{R} \\ x & \longmapsto & \frac{x^2 + 3x + 6}{2x - 4} \end{vmatrix}$

1. Montrer qu'existent *a*, *b*, *c* réels tels que, pour tout *x* différent de 2 :

$$f(x) = ax + b + \frac{c}{2x - 4}.$$

- **2.** Étudier la fonction f, construire la courbe représentative C dans un plan rapporté à un repère orthonormé $\left(0,\overrightarrow{i},\overrightarrow{j}\right)$. Montrer que C admet une asymptote oblique et un centre de symétrie ω .
- **3.** Déterminer l'équation Y = F(X) de la courbe C dans le repère $(\omega, \overrightarrow{\iota}, \overrightarrow{\iota})$.
 - **a.** Montrer que le produit XY des coordonnées d'un point de C par rapport au repère $\left(\omega, \overrightarrow{\iota}, \overrightarrow{\iota}\right)$, est strictement supérieur à 8.
 - b. Discuter, selon les valeurs du paramètre t, l'intersection de la droite Dt d'équation Y = tX et de la courbe C. Exprimer en fonction de t les coordonnées (X; Y) des points d'intersection quand ils existent.
 Retrouver en étudiant les variations de la fonction t → XY le résultat du a.

Le baccalauréat de 1978 A. P. M. E. P.

4. H désigne la courbe qui a pour équation $y = \frac{8}{x-2}$ dans le repère $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$. Soit v_n l'aire de la portion de plan limitée par les droites d'équations x = 6, x = 6 + n $(n \in N^*)$ et les courbes C et H.

- **a.** Exprimer v_n en fonction de n.
- **b.** Montrer que la somme des carrés des n premiers entiers naturels non nuls est égale

$$\frac{n(n+1)(2n+1)}{6}$$

En déduire la somme $S_n = v_1 + v_2 + ... + v_n$ en fonction de n.

- **c.** Montrer que le plus petit entier naturel n satisfaisant à la condition $s_n > 100$ est 6.
- **5.** On considère maintenant la suite (u_n) définie par :

$$u_0 = 10$$
, $u_1 = \frac{4}{5}f(u_0)$, ..., $u_n = \frac{4}{5}f(u_{n-1})$.

Calculer u_1 .

- a. Exprimer u_n 2 en fonction de u_{n-1}.
 Montrer que (u_n 2) (u_{n-1} 2) est positif quel que soit n et en déduire que u_n 2 est positif quel que soit n.
 Calculer u_n 6 et montrer que u_n 6 est positif quel que soit n.
- **b.** Démontrer l'inégalité : 2

$$u_n - 6 < \frac{(u_{n-1} - 6)^2}{10}$$

[On pourra chercher le signe de la différence $\frac{(u_{n-1}-6)^2}{10}-(u_n-6)$].

c. En raisonnant par récurrence prouver que :

$$u_n-6<10\cdot\left(\frac{2}{5}\right)^{2^n}.$$

En déduire que la suite (u_n) converge et calculer $\lim_{n\to+\infty} u_n$.