EXERCICE 1 4 POINTS

C étant un espace vectoriel sur R, on considère l'application :

$$f: \left\{ \begin{array}{ccc} \mathbb{C} & \to & \mathbb{C} \\ z & \longmapsto & f(z) = az + b\overline{z} \end{array} \right.$$

 $(\overline{z}$ désigne le nombre complexe conjugué de z).

où $a \in \mathbb{R}_+$ et où b est le nombre complexe de module a et d'argument θ , θ étant un réel différent de $k\pi$ $(k \in \mathbb{Z})$.

- **1.** Montrer que f est une -application linéaire dont on donnera la matrice dans la base (1; i) de \mathbb{C} .
- **2.** Déterminer le noyau Ker f et l'image Im f (on exprimera un vecteur de Ker f et un vecteur de Im f en fonction de θ seul).
- **3.** Montrer que Ker $f \oplus \text{Im} f = \mathbb{C}$.

EXERCICE 2 4 POINTS

Soit un sac contenant six jetons numérotés, 0, 0, 1, 2, 3, 6.

On tire successivement trois jetons, en notant à chaque fois le numéro inscrit sur le jeton et en remettant à chaque fois le jeton tiré dans le sac. On admet que tous les tirages sont équiprobables.

On obtient ainsi un triplet de nombres (a, b, c) et à chacun d'eux on associe la fonction polynôme

$$f: x \longmapsto f(x) = ax^2 + bx + c.$$

On définit une variable aléatoire X (ou aléa numérique) en associant à chaque triplet obtenu le degré du polynôme f (on conviendra que le polynôme nul est de degré 0). Déterminer la loi de probabilité de X; calculer l'espérance mathématique de X.

PROBLÈME 12 POINTS

 α est un nombre réel strictement positif différent de 1.

Partie A

On considère l'application:

$$f_{\alpha}: \mathbb{R}^{+} \longrightarrow \mathbb{R}$$

$$t \longmapsto \begin{cases} f_{\alpha}(t) = \frac{t+t^{\alpha}}{2} \operatorname{si} t \neq 0 \\ f_{\alpha}(0) = 0 \end{cases}$$

On appelle (C_{α}) la courbe représentative de f_{α} dans un repère orthonormé.

- **1.** Étudier la continuité de f_{α} en x = 0.
- **2.** Étudier les variations de f_{α} .
- **3.** Préciser suivant les valeurs de α la demi-tangente à la courbe (C_{α}) au point d'abscisse 0 ainsi que la branche infinie de la courbe (C_{α}) Dans chaque cas donner l'allure générale de la courbe (C_{α}) .

Partie B

Le baccalauréat de 1980 A. P. M. E. P.

Soit V_2 l'espace vectoriel réel, euclidien orienté de dimension 2 rapporté à la base orthonormée directe (rD.

t étant fixé, t réel strictement positif, on considère l'application linéaire T_t de V_2 dans V_2 dont la matrice dans la base $(\overrightarrow{t}, \overrightarrow{J})$ est :

$$\begin{pmatrix} \frac{t+t^{\alpha}}{2} & \frac{t-t^{\alpha}}{2} \\ \frac{t-t^{\alpha}}{2} & \frac{t+t^{\alpha}}{2} \end{pmatrix}$$

1. On considère:

$$E_{\lambda} = \left\{ \overrightarrow{u} \in V_2 | \quad T_t \left(\overrightarrow{u} \right) = \lambda \overrightarrow{u} \right\}$$

 λ étant un réel donné.

Montrer que si t est différent de 1, il existe deux réels distincts λ_1 et λ_2 tels que E_{λ_1} et E_{λ_2} ont d'autres éléments que le vecteur nul.

Montrer que E_{λ_1} et E_{λ_2} sont deux droites vectorielles dont on choisira des bases respectives $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ telles que $\left(\overrightarrow{u_1}, \overrightarrow{u_2}\right)$ soit une base orthonormée directe de V_2 . Écrire la matrice de T_t dans la base $\left(\overrightarrow{u_1}, \overrightarrow{u_2}\right)$.

- **2.** Soit M l'ensemble des applications T_t quand t décrit \mathbb{R}_+^* . Montrer que (M, \circ) est un groupe commutatif isomorphe à (\mathbb{R}_+^*, \times) , la loi \circ étant la loi de composition des applications.
- **3.** On considère l'espace affine euclidien E_2 associé à V_2 . Soit \mathcal{R} le repère $\left(O, \overrightarrow{t}, \overrightarrow{J}\right)$. Soit b t l'application affine d'endomorphisme associé T_t et admettant O pour point invariant. Soit A le point de coordonnées x=0, y=1; soit A_1 son transformé par T_t .

Déterminer les coordonnées de A_1 dans le repère \mathcal{R}_1 déduit de \mathcal{R} par la rotation de centre O et d'angle $\frac{\pi}{4}$.

4. On considère le point B dont les coordonnées dans \mathcal{R}_1 sont X = t, $Y = t^{\alpha}$. Montrer que B se déduit de A_1 par une transformation simple que l'on déterminera.