EXERCICE 1 4 POINTS

On considère l'entier naturel A qui s'écrit $\overline{1x416}$ dans le système de numération de base sept.

- 1. Déterminer x pour que
 - **a.** A soit divisible par six;
 - b. A soit divisible par cinq.En déduire qu'il existe x tel que A soit divisible par trente.
- **2.** On donne à *x* la valeur zéro. Déterminer l'écriture décimale de *A*. Quel est le nombre de diviseurs positifs de *A* ? Quel est l'ensemble des diviseurs positifs de A qui sont premiers avec trois ?

EXERCICE 2 4 POINTS

Soit α un nombre réel vérifiant $0 < \alpha < \pi$. On considère l'équation en z

(E)
$$z^2 \sin^2 \alpha - 4z \sin \alpha + 4 + \cos^2 \alpha = 0$$
.

- 1. Résoudre (E) dans le corps des nombres complexes.
- **2.** On désigne par M' et M'' les images des racines z' et z'' de (E) dans un repère orthonormé $\left(0, \overrightarrow{u}, \overrightarrow{v}\right)$ du plan complexe.

Montrer que, lorsque α varie dans]0; $\pi[$, l'ensemble des points M' et M'' est une branche d'une hyperbole (H). Préciser les sommets et les asymptotes de (H) et dessiner la branche d'hyperbole en question.

PROBLÈME 12 POINTS

Partie A

On désigne par E un espace vectoriel sur \mathbb{R} de dimension 3 et on note \mathscr{B} une base $\begin{pmatrix} \overrightarrow{\iota}, \overrightarrow{J}, \overrightarrow{k} \end{pmatrix}$ de E.

Étant donné un nombre réel a, on considère l'endomorphisme φ_a de E défini par

$$\begin{cases} \varphi(\overrightarrow{i}) &= a\overrightarrow{i} - 2\overrightarrow{j} \\ \varphi(\overrightarrow{j}) &= 2\overrightarrow{i} + a\overrightarrow{j} \\ \varphi(\overrightarrow{k}) &= a\overrightarrow{k} \end{cases}$$

On désigne par P le plan vectoriel de base (\vec{i}, \vec{j}) .

- 1. **a.** Vérifier que, pour tout $\overrightarrow{u} \in P$, $\varphi_a(\overrightarrow{u}) \in P$.
 - **b.** Soit \overrightarrow{u} un vecteur de coordonnées (x; y; z) dans la base \mathscr{B} . Quelles sont les coordonnées de $\varphi_a(\overrightarrow{u})$ dans cette base?

Déterminer le noyau de φ_a suivant les valeurs de a. À quelle condition φ_a est-il bijectif? Dans le cas contraire, déterminer l'image de φ_a et, pour tout vecteur \overrightarrow{v} de P, l'ensemble des antécédents de \overrightarrow{v} par φ_a .

Le baccalauréat de 1980 A. P. M. E. P.

2. On suppose que E est euclidien et que \mathcal{B} est orthonormée.

Soit \mathscr{P} un plan affine de direction P rapporté à un repère $\left(0, \overrightarrow{\iota}, \overrightarrow{J}\right)$. On désigne par s la restriction de φ_a au plan vectoriel P et par S l'application affine de \mathscr{P} dans \mathscr{P} associée à s telle que S(O) soit le point O' de coordonnées $(1-2\sqrt{3}\,;\,2)$.

Montrer que S est une similitude directe de \mathscr{P} . Déterminer pour $a=2\sqrt{3}$ le rapport et le centre de S et une mesure en radians de son angle dans \mathscr{P} orienté par $(\overrightarrow{i}, \overrightarrow{j})$.

Partie B

Soit \mathscr{F} l'espace vectoriel des fonctions numériques réelles définies sur l'intervalle $\left[-\frac{\pi}{2}\,;\,\frac{\pi}{2}\right]$ de \mathbb{R} . On considère le sous-espace vectoriel \mathscr{E} de \mathscr{F} engendré par les fonctions $f_1,\,f_2,\,f_3$ définies sur $\left[-\frac{\pi}{2}\,;\,\frac{\pi}{2}\right]$ par

$$f_1(t) = e^{-t} \cos t$$
, $f_1(t) = e^{-t} \sin t$, $f_3(t) = e^{-t}$.

- **1. a.** Montrer que (f_1, f_2, f_3) est une base de \mathscr{E} .
 - **b.** Soit f un élément de \mathscr{E} de coordonnées (x; y; z) dans la base (f_1, f_2, f_3) . Montrer que la fonction dérivée f' de f est un élément de \mathscr{E} dont on donnera les coordonnées dans la base (f_1, f_2, f_3) .
 - **c.** En déduire que tout élément f de $\mathscr E$ a une primitive F et une seule dans $\mathscr E$ et déterminer $\mathscr F$.
- **2.** Soit a un nombre réel. À tout élément f de $\mathscr E$ on associe la fonction $\tilde f$ définie sur $\left[-\frac{\pi}{2}\,;\,\frac{\pi}{2}\right]$ par

$$\tilde{f}(t) = (a+2)f(t) + 2f'(t)$$

où f' désigne la fonction dérivée de f. Montrer que l'on définit ainsi une application de $\mathscr E$ dans $\mathscr E$ notée ψ_a et que ψ_a est un endomorphisme de $\mathscr E$. Calculer les coordonnées de $\psi_a(f) = \tilde f$ dans la base (f_1, f_2, f_3) en fonction des coordonnées de f dans cette base.

Partie C

On applique les résultats des parties A et B du problème au cas particulier où $E=\mathcal{E}$, $\mathcal{B}=\left(f_1,\,f_2,\,f_3\right)$ et a=0. On a alors $\varphi_0=\psi_0$. Soit g l'élément de \mathcal{E} défini par

$$g(t) = e^{-t}(\cos t - \sin t)$$

pour tout $t \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

- 1. Étudier les variations de g et montrer que g est une bijection de $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ sur un intervalle J qu'on déterminera. Quel est le domaine de dérivabilité de la fonction réciproque g^{-1} ? Calculer le nombre dérivé en 1 de cette fonction g^{-1}
- 2. Tracer la courbe représentative C de g dans un repère $\mathscr R$ orthonormé (unité : 1 cm). Placer les points d'abscisses 0 et $\frac{\pi}{4}$. Tracer aussi la courbe représentative C^{-1} de la fonction réciproque g^{-1} .

Calculer l'aire en centimètres carrés du domaine D défini par la courbe (C), l'axe Ox et les droites $x=-\frac{\pi}{2}$, $x=\frac{\pi}{2}$.

Le baccalauréat de 1980 A. P. M. E. P.

3. Montrer que l'ensemble \mathcal{E}_g des fonctions antécédentes de g par φ_0 est constitué par les fonctions g_{α} , $\alpha \in \mathbb{R}$, définies sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ par

$$g_{\alpha}(t) = e^{-t} \left(\alpha + \frac{1}{2} \cos t + \frac{1}{2} \sin t \right).$$

Étudier les variations de g_{α} suivant les valeurs de α .

Tracer les courbes représentatives de $g_{-\frac{1}{2}}$ et $g_{\frac{3}{2}}$ dans un repère orthogonal $\mathcal{R}' = \left(0, \overrightarrow{i}, \overrightarrow{j}\right)$. (On prendra $\|\overrightarrow{i}\| = 3$ cm, $\|\overrightarrow{j}\| = 1$ cm). On pourra utiliser les valeurs approchées suivantes :

$$e^{\frac{\pi}{2}} \approx 4.8$$
 ; $e^{-\frac{\pi}{6}} \approx 0.6$.