EXERCICE 1 4 POINTS

On pose : $K = \int_{\sqrt{2}}^{2} \frac{1}{\sqrt{x^2 - 1}} dx$.

1. Soit f la fonction de]1; $+\infty$ [dans \mathbb{R} définie par :

$$f(x) = \text{Log}\left(x + \sqrt{x^2 - 1}\right).$$

Calculer la fonction dérivée de f. En déduire la valeur de K.

2. On pose : $J = \int_{\sqrt{2}}^{2} \sqrt{x^2 - 1} \, dx$.

Démontrer que :

$$J = \int_{\sqrt{2}}^{2} \frac{x^2}{\sqrt{x^2 - 1}} \, \mathrm{d}x - K.$$

Calculer J à l'aide d'une intégration par parties.

EXERCICE 2 4 POINTS

PROBLÈME 12 POINTS

Les parties B et C sont indépendantes de la partie A

On appelle E un espace affine euclidien orienté de dimension 3 associé à un espace vectoriel V, et $(O, \overrightarrow{\iota}, \overrightarrow{j}, \overrightarrow{k})$ un repère orthonormé direct de E.

Partie A

Soit φ l'endomorphisme de V défini par :

$$\begin{cases} \varphi\left(\overrightarrow{i}\right) &= \frac{1}{2}\overrightarrow{i} + \frac{\sqrt{6}}{4}\overrightarrow{j} - \frac{\sqrt{6}}{4}\overrightarrow{k} \\ \varphi\left(\overrightarrow{i}\right) &= -\frac{\sqrt{6}}{4}\overrightarrow{i} + \frac{3}{4}\overrightarrow{j} + \frac{1}{4}\overrightarrow{k} \\ \varphi\left(\overrightarrow{i}\right) &= \frac{\sqrt{6}}{4}\overrightarrow{i} + \frac{1}{4}\overrightarrow{j} + \frac{3}{4}\overrightarrow{k} \end{cases}$$

- 1. **a.** Soit \overrightarrow{u} un élément de V de coordonnées (x; y; z) dans la base $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$. Calculer en fonction de x, y, z les coordonnées x', y', z' de $\varphi(\overrightarrow{u})$ dans la même base.
 - **b.** Démontrer que φ est une rotation vectorielle de V dont on précisera l'axe Δ .
- **2.** Soit \overrightarrow{K} le vecteur de V défini par : $\overrightarrow{K} = \frac{\sqrt{2}}{2} (\overrightarrow{j} + \overrightarrow{k})$.
 - a. Vérifier que \overrightarrow{K} est un vecteur unitaire de Δ .
 - **b.** On pose: $\overrightarrow{I} = \overrightarrow{\iota}$ et $\overrightarrow{J} = \frac{\sqrt{2}}{2} (\overrightarrow{J} \overrightarrow{k})$.

Démontrer que $(\overrightarrow{I}, \overrightarrow{J})$ est une base orthonormée du plan vectoriel Π orthogonal à Δ.

On admettra alors que $(\vec{I}, \vec{J}, \vec{K})$ est une base orthonormée directe de V

On choisit d'orienter Π en convenant que la base $(\overrightarrow{I}, \overrightarrow{J})$ est directe.

Le baccalauréat de 1983 A. P. M. E. P.

- c. On rappelle que:
 - Π est globalement invariant par φ ;
 - l'application φ' de Π dans Π telle que, pour tout vecteur \overrightarrow{u} de Π, $\varphi'\left(\overrightarrow{u}\right) = \varphi\left(\overrightarrow{u}\right)$ est une rotation de Π. Donner une mesure de l'angle de φ' .
- 3. m étant un réel, on définit l'application affine f_m de E, d'endomorphisme associé φ , telle que l'image de O soit le point de coordonnées : $\left(0; \frac{m^2-4}{4}; \frac{m+2}{4}\right)$. Calculer les valeurs de m pour lesquelles f_m est une rotation affine. Déterminer dans chaque cas l'axe de la rotation par un point et un vecteur directeur.

Partie B

Soit P un plan affine euclidien orienté admettant le repère orthonormé direct $(O; \overrightarrow{I}, \overrightarrow{J})$, repère qui sera noté \mathcal{R} .

1. On appelle F la fonction numérique, de variable réelle, définie par :

$$F(x) = x\sqrt{3} + \sqrt{4x^2 - 1}.$$

Soit (C) sa courbe représentative dans P, rapporté à \mathcal{R} .

- **a.** Étudier les variations de la fonction *F* .
- **b.** Démontrer que (C) admet deux asymptotes que l'on déterminera.
- c. Étudier l'existence de tangentes à la courbe (C) aux points d'abscisses $\frac{1}{2}$ et $-\frac{1}{2}$.
- **d.** Calculer l'abscisse du point d'intersection de (C) et de l'axe des abscisses. Construire la courbe (C).
- 2. Soit (C') la courbe symétrique de la courbe C par rapport à l'origine.
 - **a.** Déterminer une équation de C' dans \mathcal{R} , et construire (C') sur le même graphique que C.
 - **b.** Démontrer qu'une équation de la courbe : (H) = $C \cup C'$ est :

$$y^2 - x^2 - 2\sqrt{3}xy + 1 = 0.$$

Partie C

Soit g la rotation affine du plan P, de centre O et dont une mesure de l'angle, exprimée en radians, est $\frac{\pi}{3}$.

- **1.** Quelle est l'expression analytique de g dans \mathcal{R} ?
- **2. a.** Déterminer une équation de (H'), image de (H) par la rotation g.
 - **b.** Quelle est la nature de (H') ? Préciser le centre, les asymptotes, les foyers de (H').
- **3. a.** Soit (K) une hyperbole, F_1 et F_2 ses foyers. Démontrer que l'image de (K) par une isométrie affine h est une hyperbole de foyers $h(F_1)$, $h(F_2)$.
 - **b.** En déduire la nature de (H), les coordonnées de ses foyers. Placer ces points sur la figure du B 2.