Durée: 4 heures

EXERCICE 1

Soit $\mathbb C$ l'ensemble des nombres complexes, i étant le complexe de module 1 et d'argument $\frac{\pi}{2}$. On considère l'application f de $\mathbb C - \{1+3i\}$ dans $\mathbb C$ définie par la relation

$$f(z) = \frac{z+5-i}{z-1-3i}$$

On appelle A et B les points d'affixe -5 + i et 1 + 3i respectivement.

Dans un plan orienté muni d'un repère orthonormé direct $(0, \vec{l}, \vec{j})$, on considère l'application F qui à tout point M d'affixe z fait correspondre le point F(M) = M' d'affixe f(z).

- **1.** Déterminer les points invariants par *F*.
- **2. a.** Déterminer analytiquement l'ensemble E_1 des points M d'affixe z tels que M' appartienne à $\left(O, \overrightarrow{i}\right)$, axe des réels.

Déterminer analytiquement l'ensemble E_2 des points M d'affixe z tels que M' appartienne à $\left(O, \overrightarrow{J}\right)$, axe des imaginaires purs.

Déterminer analytiquement l'ensemble E_3 des points M d'affixe z tels que M' appartienne au cercle de centre O et de rayon 1.

b. Faire une figure claire représentant ces trois ensembles E_1 , E_2 et E_3 et retrouver ces résultats par des considérations géométriques.

EXERCICE 2

Soit E l'espace orienté, muni d'un repère orthonormé direct $\mathcal{R} = (0, \vec{t}, \vec{j}, \vec{k})$. Soit f l'application affine de E dans E, qui à tout point M de E de coordonnées (x; y; z), fait correspondre le point M' de coordonnées (x'; y'; z') définies par :

$$\begin{cases} x' &=& \frac{\sqrt{2}+2}{4}x - \frac{1}{2}y + \frac{\sqrt{2}-2}{4}z \\ y' &=& \frac{1}{2}x + \frac{1}{\sqrt{2}}y + \frac{1}{2}z \\ z' &=& \frac{\sqrt{2}-2}{4}x - \frac{1}{2}y + \frac{\sqrt{2}+2}{4}z. \end{cases}$$

- 1. **a.** Montrer que f est une rotation de E, dont l'axe D est la droite de vecteur directeur $(\overrightarrow{k} \overrightarrow{i})$ passant par O.
 - **b.** Soit les vecteurs

$$\overrightarrow{e_1} = \frac{1}{\sqrt{2}} \left(\overrightarrow{k} - \overrightarrow{\iota} \right), \overrightarrow{e_2} = \overrightarrow{J}, \overrightarrow{e_3} = -\frac{1}{\sqrt{2}} \left(\overrightarrow{\iota} + \overrightarrow{k} \right).$$

Montrer que $\mathcal{R}' = \left(0, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\right)$ est un repère orthonormé direct de E.

- c. Montrer que les plans orthogonaux à D ont pour vecteurs directeurs $\overrightarrow{e_2}$ et $\overrightarrow{e_3}$. On oriente ces plans par la base $(\overrightarrow{e_2}, \overrightarrow{e_3})$. Déterminer une mesure de l'angle de la rotationf
- **2.** Donner l'expression analytique de f dans \mathcal{R}' .

Terminale C A. P. M. E. P.

PROBLÈME

Partie A Question préliminaire

Soit g la fonction polynôme définie dans \mathbb{R} par $g(x) = x^2 + x - m$, où m est un paramètre réel non nul.

- **1.** Résoudre l'équation g(x) = 0.
- **2.** Lorsque cette équation a deux racines réelles distinctes x' et x''(x' < x''), placer -1 et 0 par rapport à x' et x''. Pour cela on pourra étudier le signe de g(0) et g(-1) et démontrer que :
 - $-\sin m > 0$, 0 et -1 sont entre x' et x'' et
 - − si m < 0, les racines x' et x'' sont négatives et situées entre −1 et 0.

Les parties B, C, D sont dans une large mesure indépendantes. Dans ces trois parties on appelle P un plan rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

Partie B

Soit m > 0. Soit f_m l'application définie sur $\mathbb{R}^* - \{-1\}$ par

$$f_m(x) = x + 1 + m \ln \left| 1 + \frac{1}{x} \right|$$

et \mathscr{C}_m la courbe représentative de f_m dans le repère $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$.

- 1. Donner les limites de f_m aux bornes de son ensemble de définition.
- **2.** Étudier les variations de f_m .
- **3.** Étudier les branches infinies de \mathscr{C}_m . Étudier complètement la position des courbes \mathscr{C}_m par rapport à leur asymptote oblique D.
- **4.** Démontrer que toutes les courbes \mathscr{C}_m passent par un point fixe 1. Démontrer que I est centre de symétrie de chaque courbe \mathscr{C}_m ?
- **5.** Construire \mathscr{C}_2 et \mathscr{C}_1 dans le même repère $\left(0, \overrightarrow{\iota}, \overrightarrow{J}\right)$. On prendra comme unité 2 cm. (On ne précisera pas les points d'intersection avec les axes ni les points d'inflexion).
- **6.** Soit λ un réel tel que $0 < \lambda < 1$ et soit $\mathcal{A}(\lambda)$ l'aire de la partie de plan limitée par les courbes \mathcal{C}_2 et \mathcal{C}_1 et les droites d'équation $x = \lambda$ et x = 1. Calculer $\mathcal{A}(\lambda)$. Quelle est la limite de $\mathcal{A}(\lambda)$ lorsque λ tend vers 0_+ ?

Partie C

Soit $t \in \mathbb{R}^*$ et g_t l'application affine de P dans P telle que

$$g_t\colon M(x\,;\,y)\longmapsto M'\left(x'\,;\,y'\right)\left\{\begin{array}{lcl} x'&=&x\\ y'&=&(1-t)x+ty+1-t.\end{array}\right.$$

- 1. Soit $G = \{g_{t, t \in \mathbb{R}^*}\}$. Soit φ l'application de \mathbb{R}^* dans G définie par : $\forall t \in \mathbb{R}^*, \varphi(t) = g_t$.
 - Démontrer que φ est un isomorphisme de (\mathbb{R}^* , ×) dans (G, \circ). Quelle est la structure de (G, \circ)? (On note \circ la composition des applications).
- **2.** Quel est l'ensemble des points invariants par g_t ?
- **3.** Soit H l'image de M par la projection sur la droite D (dont une équation est y = x + 1), parallèlement à la droite vectorielle engendrée par \overrightarrow{J} . Exprimer $\overrightarrow{HM'}$ en fonction de \overrightarrow{HM} .

Terminale C A. P. M. E. P.

- **4.** Soit $\mathcal{F} = \{\mathcal{C}_m, m > 0\}$, où \mathcal{C}_m est la courbe définie en B.
 - **a.** Démontrer que, $\forall t \in \mathbb{R}_+^{\star}$ l'image par g_t , d'un élément de \mathscr{F} est un élément de \mathscr{F} .
 - **b.** Déterminer le réel t tel que l'image de \mathcal{C}_2 par g_t , soit \mathcal{C}_1 .

Partie D

Soit M un point mobile dans le plan P dont les coordonnées à la date t $(t \in \mathbb{R}_+^*)$ sont

$$\begin{cases} x = \frac{1}{e^t - 1} \\ y = \frac{1}{e^t - 1} + 2t + 1 \end{cases}$$

- 1. Démontrer que la trajectoire γ du point M est contenue dans la courbe \mathcal{C}_2 .
- **2.** Déterminer l'image de l'intervalle]0; $+\infty[$ par la fonction $h:t\longmapsto \frac{1}{\mathrm{e}^t-1}$. En déduire la trajectoire γ . Préciser le sens de parcours de M.

Rouen 3 septembre 1983