∽ Baccalauréat C Espagne juin 1990 ∾

EXERCICE 1 4 POINTS

Le plan complexe (P) est rapporté à un repère orthonormal $(O, \overrightarrow{u}, \overrightarrow{v})$.

1. Déterminer l'ensemble (C) des points M de (P) d'affixe z vérifiant

$$\left| (1 - i\sqrt{3})z - \sqrt{3} - i \right| = 4.$$

2. Déterminer l'écriture complexe de la similitude directe S transformant le point A d'affixe i en O origine du repère et transformant le point B d'affixe $\sqrt{3}$ en B' d'affixe -4i.

Préciser le centre, le rapport et l'angle de S.

3. En utilisant les résultats établis au 2. retrouver l'ensemble (*C*) défini au 1.

EXERCICE 2 4 POINTS

Dans le plan orienté, on considère un triangle ABC tel que AB = AC et $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{2}$ modulo 2π .

Soient I, J, K les milieux respectifs de [BC], [CA] et [AB].

On appelle R la rotation de centre I et d'angle de mesure $\frac{\pi}{2}$ et T la translation de vecteur $\frac{1}{2}\overrightarrow{BC}$.

On pose $f = R \circ T$ et $g = T \circ R$.

- 1. a. Déterminer l'image de K par f, et l'image de J par g.
 - **b.** Préciser la nature et les éléments caractéristiques des applications f et g.
- **2. a.** Déterminer la nature de la transformation $g \circ f^{-1}$ (f^{-1} étant l'application réciproque de f).
 - **b.** Chercher l'image de A par $g \circ f^{-1}$ et caractériser alors cette application.
 - **c.** Soit M un point quelconque du plan, M_1 l'image de M par f et M_2 l'image de M par g.

Quelle est la nature du quadrilatère ACM_2M_1 ?

PROBLÈME 12 POINTS

On considère pour n entier naturel non nul la fonction numérique f_n définie sur $[0; +\infty[$ par

$$\begin{cases} f_n(x) = x^n (\ln x)^2 \text{ si } x \text{ appartient à }]0; +\infty[\\ f_n(0) = 0. \end{cases}$$

On appelle (C_n) la courbe représentative de f_n dans le plan rapporté à un repère orthonormal $(0, \overrightarrow{i}, \overrightarrow{j})$ (l'unité étant 4 cm). Question préliminaire

Montrer que f_n a pour limite 0 en 0.

A. Dans toute cette partie, on choisit n = 1

1. Étudier la dérivabilité de f_1 en 0.

- **2.** Établir le tableau de variations de f_1 .
- **3.** Construire la courbe (C_1) en précisant la tangente au point 0.
- **4. a.** Écrire une équation cartésienne de la tangente à (C_1) en son point d'abscisse x_0 (x_0 réel strictement positif donné).
 - **b.** Quelle relation x_0 doit-il vérifier pour que cette tangente passe par le point A de coordonnées (2; 0)?
- **5. a.** Établir le tableau de variations de la fonction numérique h définie sur]0; $+\infty[$ par

$$h(x) = 2 - x + \ln x.$$

b. Justifier que l'équation h(x) = 0 admet dans]0; $+\infty[$ deux solutions distinctes.

Donner pour chacune d'elles un encadrement décimal d'amplitude 10^{-1} .

c. Déduire des questions précédentes le nombre de tangentes, autres que l'axe des abscisses, à la courbe (C_1) issues du point A(2; 0).

B. Dans cette partie n appartient $a \mathbb{N} *$

- **1.** Étudier, pour $n \ge 2$, la dérivabilité de f_n en 0.
- **2.** Établir, pour $n \ge 2$, le tableau de variations de f_n .
- **3.** Étudier, pour *n* appartenant à \mathbb{N}^* , la position relative des courbes (C_n) et (C_{n+1}) .
- **4.** Construire la courbe (C_2) dans le même repère que (C_1) en précisant sa tangente au point O.

C. Soit λ un réel appartenant à]0; 1[

Pour tout entier naturel n non nul on appelle $I_n(\lambda)$ l'intégrale définie par

$$I_n(\lambda) = \int_{\lambda}^1 f_n(x) \, \mathrm{d}x.$$

- 1. Étudier le sens de variation de la suite $(I_n(\lambda))_{n\in\mathbb{N}^*}$. Montrer qu'elle est convergente.
- **2.** À l'aide de deux intégrations par parties calculer $I_n(\lambda)$ en fonction de n et de λ .
- 3. Déduire de 2. :

Espagne

- **a.** λ étant fixé, la limite de la suite $(I_n(\lambda))$ quand n tend vers $+\infty$.
- **b.** n étant fixé, la limite $\Psi(n)$ de $I_n(\lambda)$ quand λ tend vers zéro.
- **4.** En admettant que $\Psi(n)$ représente l'aire de la partie du plan délimitée par (C_n) , les droites d'équations x=0, x=1 et l'axe des abscisses, calculer en cm² l'aire de la partie du plan délimitée par (C_1) , (C_2) et les droites d'équations x=0 et x=1.

2

juin 1990