

EXERCICE 1 4 points

Enseignement obligatoire

Le plan complexe P est rapporté au repère orthonormal direct $(0, \overrightarrow{u}, \overrightarrow{v})$ ayant comme unité graphique 2 cm.

On désigne par A et B les points d'affixes respectives -1 et i.

Soit f l'application de $P-\{A\}$ dans P qui, à tout point M de $P-\{A\}$ d'affixe Z, associe le point f(M) d'affixe Z telle que :

$$Z = i \frac{z - i}{z + 1}.$$

(On rappelle que : $arg(zz') = arg z + arg z' + 2k\pi$, k entier relatif).

- **1. a.** Soit *G* le point d'affixe (-1+i). Déterminer f(G).
 - **b.** Déterminer le point M de $P \{A\}$ tel que f(M) = O.
- **2.** Donner une interprétation géométrique des arguments de (z-i) et de (z+1). Préciser l'argument de i.

En déduire une interprétation géométrique de l'argument de Z.

- **3. a.** Déterminer et construire l'ensemble S_1 des points M de $P \{A\}$ dont les images par f ont pour affixe un nombre réel.
 - **b.** Déterminer et construire l'ensemble S_2 des points M de $P \{A\}$ dont les images par f ont pour affixe un nombre imaginaire pur.

N. B. - Les élèves qui suivent l'enseignement de spécialité utiliseront, pour traiter 3. a et 3.b, leurs connaissances sur le lieu des points M tels que

 $(\overrightarrow{MA}, \overrightarrow{MB}) = \alpha \mod \pi$ ou $\mod 2\pi$.

EXERCICE 2 4 points

Enseignement obligatoire

Une urne contient douze boules indiscernables au toucher : m boules blanches et n boules noires.

- 1. On tire successivement deux boules de l'urne, la boule tirée n'étant pas remise dans l'urne après le premier tirage.
 - Déterminer les couples (m, n) pour que la probabilité d'obtenir deux boules de couleurs différentes soit égale à $\frac{16}{33}$.
- **2.** On prend désormais m = 8 et n = 4.

On tire successivement 3 boules de l'urne, la boule tirée étant remise dans l'urne après chaque tirage.

- a. Calculer la probabilité d'obtenir exactement une boule blanche.
- **b.** Calculer la probabilité d'obtenir au moins une boule blanche et au moins une boule noire.

(On donnera les résultats sous forme de fractions irréductibles.)

EXERCICE 2 4 points

Enseignement de spécialité

On considère dans le plan un triangle ABC tel que : AB = 7, BC = 4 et AC = 5 (unité graphique = 1 cm). Soit I le milieu de [BC].

Baccalauréat C A. P. M. E. P.

- 1. Montrer que AI = $\sqrt{33}$.
- **2. a.** Soit M un point du plan. Pour quelle valeur du réel m le vecteur $\overrightarrow{mMA} + \overrightarrow{ME} + \overrightarrow{MC}$ est-il égal à un vecteur \overrightarrow{U} indépendant du point M? Déterminer alors le vecteur \overrightarrow{U} en fonction du vecteur \overrightarrow{AI} .
 - **b.** Déterminer et construire l'ensemble *E* des points *M* du plan tels que :

$$-2MA^2 + MB^2 + MC^2 = -58$$
.

- **3.** Soit D le barycentre du système : $\{(A, -1); (B, 1); (C, 1)\}$.
 - a. Quelle est la nature du quadrilatère ABDC? Justifier la réponse.
 - **b.** Déterminer et construire l'ensemble F des points M du plan tels que :

$$-MA^2 + MB^2 + MC^2 = -25$$
.

PROBLÈME 12 points

On considère les fonctions dépendant d'un entier naturel n et définies sur l'intervalle [0;1] par :

$$f_0(x) = \frac{1}{1+x+x^2}$$
 et pour tout $n \ge 1$: $f_n(x) = \frac{x^n}{1+x+x^2}$.

On pose : $I_n = \int_0^1 f_n(x) dx$.

Dans la partie A, on étudie la fonction f_0 et sa fonction dérivée.

Dans la partie B, on étudie la suite des nombres réels I_n .

Partie A

- 1. Étudier le sens de variation de la fonction f_0 . Construire la courbe représentative de f_0 dans un repère orthonormal (unité graphique : 6 cm) en précisant les tangentes aux points d'abscisses 0 et 1.
- **2.** On note pour tout x appartenant à l'intervalle $[0;1]:f(x)=-f_0'(x)$. Calculer la fonction dérivée de f et montrer que f est décroissante sur [0;1]. En déduire que pour tout x appartenant à [0;1], on a : $\frac{1}{3} \leqslant f(x) \leqslant 1$.

Partie B

(On ne cherchera pas à calculer I_n .)

- 1. Calculer: $I_0 + I_1 + I_2$ et $I_0 + 2I_1$.
- **2.** Étudier, pour tout entier n et pour x appartenant à [0; 1], le signe de $f_{n+1}(x) f_n(x)$.

En déduire que la suite (I_n) est décroissante.

3. Montrer que, pour tout entier n et pour tout x appartenant à [0; 1], $0 \le f_n(x) \le x^n$.

En déduire que : $0 \le I_n \le \frac{1}{n+1}$.

Déterminer la limite de la suite (I_n) .

4. a. À l'aide d'une intégration par parties, montrer que pour tout entier n:

$$I_n = \frac{1}{3(n+1)} + \frac{1}{n+1} \int_0^1 f(x) x^{n+1} dx.$$

(f étant la fonction définie dans le A. 2.).

Baccalauréat C A. P. M. E. P.

b. En utilisant l'encadrement obtenu dans la question A. 2., montrer que, pour tout entier *n* :

$$\frac{1}{3(n+2)} \leqslant \int_0^1 f(x) x^{n+1} \, \mathrm{d}x \leqslant \frac{1}{n+2}.$$

puis que:

$$\frac{1}{3(n+1)} + \frac{1}{3(n+1)(n+2)} \leqslant I_n \leqslant \frac{1}{3(n+1)} + \frac{1}{(n+1)(n+2)}$$

- **c.** À partir de quel entier n_0 cet encadrement conduit-il à une valeur approchée au centième près de I_n ?
- **d.** Déterminer alors la valeur approchée au centième près de I_n pour $n = n_0$.