∽ Baccalauréat C Métropole groupe 2 1 juin 1993 ∾

EXERCICE 1 4 points Enseignement obligatoire

Une unité de longueur a été choisie. On demande de faire une figure. Soit ABC un triangle équilatéral de côté 3, B' est le milieu de [AC] et D le point défini par la relation :

$$\overrightarrow{AAD} = \overrightarrow{AB} + \overrightarrow{3BC}$$
.

1. Démontrer que D est le barycentre du système :

$$\{(A, 3); (B, -2); (C, 3)\}.$$

En déduire que D appartient à la médiatrice du segment [AC].

- **2.** Démontrer que $\overrightarrow{BD} = \frac{3}{2}\overrightarrow{BB'}$.
- **3.** Calculer : DA^2 et DB^2 .
- **4.** Déterminer l'ensemble (E) des points M vérifiant la relation :

$$3MA^2 - 2MB^2 + 3MC^2 = 12.$$

EXERCICE 2 4 points

Une urne contient six boules indiscernables au toucher : quatre boules vertes et deux boules jaunes.

1. On tire simultanément au hasard deux boules de l'urne.

On note X la variable aléatoire qui, à chaque tirage de deux boules, associe le nombre de boules vertes tirées.

Déterminer la loi de probabilité de la variable aléatoire X et calculer son espérance.

2. On tire au hasard, deux fois de suite, deux boules simultanément, les boules n'étant pas remises dans l'urne.

On note A, B, C, D les évènements suivants :

A : aucune boule verte n'est tirée au cours du premier tirage de deux boules.

B : une boule verte et une boule jaune sont tirées au cours du premier tirage de deux boules.

C : deux boules vertes sont tirées au cours du premier tirage de deux boules.

D : une boule verte et une boule jaune sont tirées au cours du deuxième tirage de deux boules.

a. Calculer:

P(D/A) (Probabilité conditionnelle de D sachant que A est réalisé); P(D/B) (Probabilité conditionnelle de D sachant que B est réalisé); P(D/C) (Probabilité conditionnelle de D sachant que C est réalisé).

- **b.** En déduire les probabilités des évènements $D \cap A$, $D \cap B$ et $D \cap C$.
- **c.** Calculer la probabilité de l'évènement *D*.

^{1.} Bordeaux, Caen, Clermont-Ferrand, Limoges, Nantes, OrlÉans-Tours, Poitiers, Rennes

Baccalauréat C A. P. M. E. P.

PROBLÈME 11 points

La partie C est indépendante de la partie B du problème

Partie A

1. Étudier sur l'intervalle 0 le sens de variation de la fonction h_1 définie par

$$h_1(x) = x - \ln x$$
.

Montrer que pour tout réel x appartenant à l'intervalle]0; $+\infty[$ on a

$$h_1(x) > 0$$
.

On définit alors sur l'intervalle]0; $+\infty[$ la fonction f_1 par

$$f_1(x) = \frac{x}{x - \ln x}.$$

- 2. Étudier le sens de variation de la fonction f_1 . Déterminer les limites de f_1 aux bornes de l'intervalle]0; $+\infty[$. Dresser le tableau de variations.
- **3.** On considère la fonction φ_1 définie sur l'intervalle]0; $+\infty[$ par

$$\begin{cases} \varphi_1(0) = 0 \\ \varphi_1(x) = f_1(x) & \text{pour } x \in]0 ; +\infty[\end{cases}.$$

Montrer que φ_1 prolonge f_1 par continuité. Étudier la dérivabilité de φ_1 en 0.

Partie B.

Dans cette partie, n désigne un entier naturel supérieur où égal à 2.

1. Étudier sur l'intervalle]0; $+\infty[$ le sens de variation de la fonction h_n définie par

$$h_n(x) = x^n - \ln x.$$

En déduire que pour tout réel x appartenant à l'intervalle]0; $+\infty[$ on a : $h_n(x) > 0$.

On définit alors sur l'intervalle]0; $+\infty[$ la fonction f_n par

$$f_n(x) = \frac{x}{x^n - \ln x}.$$

2. On définit sur l'intervalle]0; $+\infty[$ la fonction g_n par

$$g_n(x) = 1 + (1 - n)x^n - \ln x.$$

Montrer que g_n est strictement croissante sur l'intervalle]0; $+\infty[$. En déduire l'existence d'un réel unique a_n tel que : $g_n(a_n) = 0$. Comparer a_n et 1. Quelle est la valeur de a_2 ?

3. a. Démontrer que pour tout x de l'intervalle]0; $+\infty[$, on a

$$f'_n(x) = \frac{g_n(x)}{(x^n - \ln x)^2}.$$

En déduire le sens de variation de f_n .

Baccalauréat C A. P. M. E. P.

- **b.** Préciser les limites de f_n aux bornes de]0; $+\infty[$ et dresser le tableau des variations de f_n .
- **4. a.** En vous aidant la la question 3. de la partie A., montrer que f_n admet un prolongement par continuité φ_n dérivable sur]0; $+\infty[$.
 - **b.** Tracer la représentation graphique \mathscr{C}_2 de φ_2 dans un repère orthonormé (unité : 4 cm).

Partie C

Calcul approché de l'intégrale $\int_{1}^{3} f_{1}(x) dx$ par la méthode des rectangles.

1. En utilisant la question A., déterminer lorsque x appartient à l'intervalle [1; 3], un encadrement de $x - \ln x$.

En déduire que pour tout x de l'intervalle [1; 3], on a

$$\left| f_1'(x) \right| \leqslant 1. \tag{1}$$

2. On considère deux nombres réels α et β tels que $1 \le \alpha < \beta \le 1$ et on pose

$$A = \int_{\alpha}^{\beta} f_1(x) dx \quad \text{et} \quad J = \int_{\alpha}^{\beta} f_1(\alpha) dx.$$

a. En utilisant la relation (1)et l'inégalité des accroissements finis, démontrer, que pour tout nombre réel x appartenant à l'intervalle $[\alpha; \beta]$, on a

$$\alpha - x \leqslant f_1(x) - f_1(\alpha) \leqslant x - \alpha$$
.

b. En déduire que

$$\int_{\alpha}^{\beta} (\alpha - x) \, \mathrm{d}x \leqslant A - J \leqslant \int_{\alpha}^{\beta} (x - \alpha) \, \mathrm{d}x.$$

c. Montrer que

$$|A-J| \le \frac{1}{2}(\beta - \alpha)^2.$$

3. On partage l'intervalle [1; 3] en n intervalles de même longueur en utilisant les réels x_0, x_1, \ldots, x_n tels que

$$1 = x_0 < x_1 < \dots < x_{n-1} < x_n = 3.$$

On a dono

 $x_{k+1} - x_k = \frac{2}{n}$ pour k appartenant à $\{0; 1; ...; n\}$.

On pose

$$A_k = \int_{x_k}^{x_{k+1}} f_1(x) dx$$
 et $J_k = \int_{x_k}^{x_{k+1}} f_1(x_k) dx$.

Démontrer que

$$\left| \int_{1}^{3} f_{1}(x) \, \mathrm{d}x - (J_{0} + J_{1} + \dots + J_{n-1}) \right| \leqslant \frac{2}{n}.$$

En déduire une valeur approchée de $\int_1^3 f_1(x) \, \mathrm{d}x$ à 10^{-1} près. On légitimera le choix de n.