LYCEE ALI BOURGUIBA	DEVOIR DE CONTROLE	Prof: Mr: Aguech . Mabrouk
BEMBLA		
Classe: 1 ^{ere} A 2007/08	N°3	Durée : 45 munîtes

EXERCICE $N^{\circ} 1$: (10 pts)

1) Développer puis simplifier les expressions suivantes :

A =
$$(\sqrt{2} + 3)^2 - 6\sqrt{2}$$
 ; B = $(x^2 + 1)^3 - (x^3 + 1)^2$
C = $(2x + 5)(2x - 5)$

2) Soit
$$x = 7 + 4\sqrt{3}$$
 et $y = 7 - 4\sqrt{3}$

- a) Calculer x.y.
- b) Montrer que $(\sqrt{x} + \sqrt{y})^2 = 16$
- 3) a) Factoriser au maximum

E =
$$(3 \times -2)^2 - x^2$$
; F = $x^3 + 9 x^2 + 27 x + 27$
G = $(x + 3) (x^2 + 1)^2 - x - 3$
b) Montrer que : $\frac{F}{G} = \frac{(x + 3)^2}{x^2 (x^2 + 2)}$

EXERCICE
$$N^{\circ} 2$$
: (10 pts)

1) Soit x un angle aigu tel que tan x = 2.

a) Montrer que 1 +
$$(\tan x)^2 = \frac{1}{(\cos x)^2}$$

- b) Calculer alors cos x et sin x
- 2) Soit ζ un cercle de diamètre [AB] tel que AB = 8 C étant un point de la tangente à ζ en B tel que BC = 4. Le segment [AC] coupe ζ en I.
 - a) Déterminer la nature du triangle ABI.
 - b) Montrer que AC = $4\sqrt{5}$ puis calculer cos BAC et tan BAC.
 - c) Calculer les distances BI et CI.

