ASSES:PREMIERE ANNEE S1+S2

DUREE: 45 MINUTES

Calculatrice autorisée

EXERCICE 1: 3 POINTS

Cocher la bonne réponse :

1- L'écriture réduite de $(2x^2)^2 + 5x^{10} - 4(x^4 - 2) - 4(x^2)^5 - 9$ est :

a)
$$\square x^6 - 1$$

b)
$$\Box$$
 $x^{10} - 1$

c)
$$\Box -2x^4 + x^{10} - 1$$

$$2 \sim (\sqrt{2} - 1)^3 =$$

a)
$$\Box 2\sqrt{2} - 1$$

b)
$$\Box -7 + 5\sqrt{2}$$

c)
$$\Box$$
 7+5 $\sqrt{2}$

3~ a et b deux réels alors $a^3 - b^3 =$

a)
$$\Box$$
 (a - b) (a² + b²)

b)
$$\Box$$
 (a - b) (a² + ab - b²)

a)
$$\Box$$
 (a - b) (a² + b²) b) \Box (a - b) (a² + ab - b²) c) \Box (a - b) (a² + ab + b²)

EXERCICE 2:6 POINTS

- les deux questions sont indépendantes -

1~ Factoriser les expressions suivantes :

•
$$A = (x+2)^2 - 4$$

$$\bullet B = X^3 + 8$$

2~ Résoudre dans \mathbb{R} les équations suivantes :

•
$$3x + 2 = x + 4$$

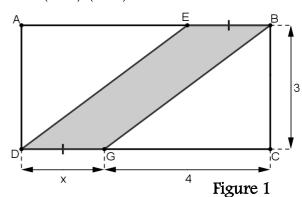
$$\bullet |x+8|=8$$

•
$$(x-1)^2(x+1) + x^3 - 1 = 0$$

EXERCICE 3: 4 POINTS

la figure 1 si contre représente un rectangle ABCD. la partie grise représente un parallélogramme EBGD. On désigne par A₁ l'aire du parallélogramme EBGD et par \mathcal{A}_2 l'aire de la partie blanche restante

- 1- a-Exprimer l'aire du rectangle ABCD en fonction de x **b**~ Exprimer l'aire \mathcal{A}_1 en fonction de x
- 2- Déterminer x pour que l'aire \mathcal{A}_1 soit égale a l'aire \mathcal{A}_2



EXERCICE 4: 7 POINTS

la figure 2 si contre représente un demi cercle & de diamètre [AB] et de rayon 1. O le milieu de [AB] M un point de \mathscr{C} et C le projeté orthogonal de M sur [AB]. On pose x = MAB avec $0^{\circ} \prec x \prec 45^{\circ}$

1- justifier que $\hat{MOC} = 2x$ et que le triangle MAB est rectangle en M

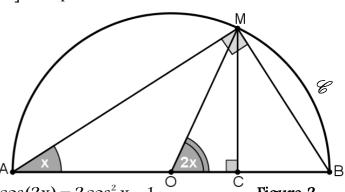
2~ montrer que $\cos x = \frac{AC}{AM} = \frac{AM}{AB}$

3- a- montrer que OC = cos(2x)

b-en déduire que $AC = 1 + \cos(2x)$ ②

4~ a~en utilisant les relations ① et ② montrer que $cos(2x) = 2cos^2 x - 1$ **b**-en déduire que $cos(2x) = cos^2 x - sin^2 x = 1 - 2sin^2 x$

5- a-montrer que $MC = \sin(2x)$ et $MB = 2\sin x$ **b**-en déduire que $\sin(2x) = 2\sin x \cos x$



CORRECTION DE L'EXERCICE 4: FORMULES DE DUPLICATION

la figure 2 si contre représente un demi cercle \(\mathscr{C}\) de diamètre \([AB]\) et de rayon 1. O le milieu de \([AB]\) M un point de \mathscr{C} et C le projeté orthogonal de M sur [AB]. On pose x = MAB avec $0^{\circ} \prec x \prec 45^{\circ}$

1- justifier que $\hat{MOC} = 2x$ et que le triangle MAB est rectangle en M

2~ montrer que
$$\cos x = \frac{AC}{AM} = \frac{AM}{AB}$$

 $3 \sim a \sim montrer que OC = cos(2x)$

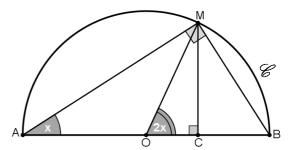


Figure 2

- **b**-en déduire que $AC = 1 + \cos(2x)$ **4**- a-en utilisant les relations ① et ② montrer que $cos(2x) = 2cos^2 x - 1$
- **b**-en déduire que $\cos(2x) = \cos^2 x \sin^2 x = 1 2\sin^2 x$ 5- a-montrer que $MC = \sin(2x)$ et $MB = 2\sin x$
- **b**-en déduire que $\sin(2x) = 2\sin x \cos x$

CORRIGÉ

- 1- MÂB est un angle inscrit dans le cercle & qui intercepte le même arc MB avec l'angle au centre \hat{MOC} . Donc $\hat{MOC} = 2\hat{MAB}$ et puisque $\hat{MAB} = x$, alors $\hat{MOC} = 2x$
 - \mathscr{C} est un demi cercle de diamètre [AB] et $M \in \mathscr{C}$ donc le triangle MAB est rectangle en M.
- 2~ le triangle AMC est rectangle en C donc $\cos x = \frac{\text{adjacent}}{\text{hypothenu}} = \frac{AC}{AM}$ le triangle AMB est rectangle en M donc $\cos x = \frac{\text{adjacent}}{\text{hypothenu}} = \frac{AM}{AB}$ ⇒ $\cos x = \frac{AC}{AM} = \frac{AM}{AB}$
- 3-a-le triangle COM est rectangle en C donc $\cos 2x = \frac{\text{adjacent}}{\text{hypothenus e}} = \frac{\text{OC}}{\text{OM}} = \frac{\text{OC}}{1} = \text{OC}$. Ainsi $\boxed{\text{OC} = \cos(2x)}$ $\mathbf{b} \sim AC = \underbrace{AO}_{1} + \underbrace{OC}_{\cos(2x)} = 1 + \cos(2x) \text{ donc } \bigcirc \boxed{AC = 1 + \cos(2x)}$
- **4~a** d'après ② on a : cos(2x) = AC 1, d'après ① on a : AC = AM cos x et AM = AB cos x = 2 cos xdonc $AC = 2\cos x \cdot \cos x = 2\cos^2 x$ et par suite $\cos(2x) = 2\cos^2 x - 1$
 - $b \sim \cos(2x) = 2\cos^2 x 1 = 2\cos^2 x (\cos^2 x + \sin^2 x) = \underbrace{2\cos^2 x \cos^2 x}_{\cos^2 x} \sin^2 x = \cos^2 x \sin^2 x$ $donc \ \cos(2x) = \cos^2 x - \sin^2 x$ $\cos(2x) = \cos^2 x - \sin^2 x = 1 - \sin^2 x - \sin^2 x = 1 - 2\sin^2 x donc \ \cos(2x) = 1 - 2\sin^2 x$

Et par suite $\cos(2x) = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1$: formules de duplication

5-a-le triangle MOC est rectangle en C donc $\sin(2x) = \frac{\text{opposé}}{\text{hypothenus e}} = \frac{\text{MC}}{\text{OM}} = \frac{\text{MC}}{1} = \text{MC}$. Ainsi $\boxed{\text{MC} = \sin(2x)}$

le triangle MAB est rectangle en M donc $\sin x = \frac{\text{oppos\'e}}{\text{hypothenus e}} = \frac{\text{MB}}{\text{AB}} = \frac{\text{MB}}{2}$. Ainsi $\boxed{\text{MB} = 2\sin x}$

b-le triangle MAB est rectangle en M et MC la hauteur issue de M donc : $MA \times MB = MC \times AB$

• MA = $2\cos x$, • MB = $2\sin x$, • MC = $\sin(2x)$ et • AB = 2

 $MC \times AB = MA \times MB$ signifie $2\sin(2x) = 2\cos x \cdot 2\sin x$ et par suite :

 $\sin(2x) = 2\sin(x)\cos(x)$: formule de duplication

