

EXERCICE 1 (4 pts)

- 1) Définir une fonction
- 2) Répondre par vrai ou faux
 - a) La représentation graphique d'une fonction linéaire est une droite
 - b) $(\sin x)^2 + (\cos y)^2 = 1$
 - c) Toute fonction affine nulle s'écrit sous la forme f(x) = c, $c \in R$

EXERCICE 2 (5 pts)

- 1) Soit f: $x \xrightarrow{yields} |2x|$
- a) Calculer f(1), f(0) et f (-1)
- b) f est elle une fonction linéaire
- 2) Soit g une fonction linéaire qui passe par le point de coordonnée (2,-1) Expliciter h

EXERCICE 2 (11 pts)

Soit k une fonction affine dont sa représentation graphique Δ_k passe par les point des coordonnées (1 ,1) et (3,-3)

- 1) a) Expliciter la fonction k
 - a) Représenter Δ_k dans un repère (O, I, J)
- 2) Soit g une fonction affine dont sa représentation graphique Δ_g est parallèle a Δ_k et passe par le point de coordonnées (1,0)
 - a) Expliciter la fonction g
 - b) Représenter Δ_g dans le même repère (O, I, J)
 - c) Le Point de coordonnées (1,3) appartient ils $\grave{\mathbf{a}}$ Δ_g
- 3) Soit f(x) = 2x 5 dont Δ_f est sa représentation graphique
 - a) Déterminer par le calcul les coordonnées de point d'intersection entre Δ_f et Δ_g
 - b) Déterminer les coordonnées de point d'intersection de Δ_f avec l'axe des abscisses
 - c) Déterminer les coordonnées de point d'intersection de Δ_g avec l'axe des ordonnés

4) Soit h une fonction linéaire dont Δ_h sa représentation graphique Expliciter h telle que Δ_f , Δ_g et Δ_h sont concourantes

NB : Des **droites concourantes** sont des <u>droites</u> qui ont un <u>point</u> d'<u>intersection</u> commun, ce point étant appelé **point de concours**

BON TRAVAIL

