Prof: H.SAMI

Devoir de controle nº3 des mathématiques

1^{er} secondaire 1, 2

Exercice nº1

Choisir la bonne repense

1- La valeur de l'expression A = $\frac{x-1}{x+3} - x^2 + x^4$ pour x=0,000011 est. a) -0,00443211 b) -0,002233454

c) -o.333328444

2- Sin30=

a)
$$\frac{1}{2}$$
 b) $\frac{\sqrt{2}}{2}$ c) $\frac{\sqrt{3}}{2}$

b)
$$\frac{\sqrt{2}}{2}$$

c)
$$\frac{\sqrt{3}}{2}$$

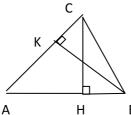
3- $\cos^2 60 + \cos^2 30 =$

4- Soit \widehat{A} un angle aigu tel que $\cos \widehat{A} = \frac{\sqrt{5} + \sqrt{3}}{4}$ alors :

a)
$$\sin \hat{A} = \frac{\sqrt{5} - \sqrt{3}}{4}$$

a)
$$\sin \hat{A} = \frac{\sqrt{5} - \sqrt{3}}{4}$$
 b) $\sin \hat{A} = \frac{-\sqrt{5} + \sqrt{3}}{4}$ C) $\sin \hat{A} = \frac{\sqrt{5} + \sqrt{3}}{4}$

C)
$$\sin \hat{A} = \frac{\sqrt{5} + \sqrt{3}}{4}$$


5- $(x-y)^3=$

a)
$$X^3$$
-3xy+y³

a)
$$X^3-3xy+y^3$$
 b) x^3-y^3 c) $x^3-3x^2y+3xy^2-y^3$

Exercice n °2

Dans la figure suivante on a :

ABC un triangle et H le projetée orthogonale du point B sur (AC) tels que : \hat{A} =45, \hat{B} =60 et AH=2

- 1- Déterminer \hat{c}
- 2- Calculer HC et AC.
- 3- A) Calculer $\tan \hat{B}$ en déduire BH
 - B) Calculer $\sin \widehat{B}$ en déduire BC
- 4- Soit K le projeté orthogonale de B sur (AC)
 - A- Calculer KB, en déduire sin75
 - B- Calculer $\cos \hat{A}$ en déduire AK et $\cos 75$

Exercice n º3

A- Factoriser les deux expressions suivantes.

$$E=(2x+1)^3+1$$

 $F=x^3+3x^2+3x+1$

B- Développer les deux expressions suivantes.

$$G=(2t-1)^2-(2t+1)^2$$

H=(1+G)²+8-2G

Prof: H.SAMI

Devoir de controle nº3 des mathématiques

1^{er} secondaire 1, 2

Exercice n 1

- 1- c
- 2_ k
- 3- a
- 4- b
- 5- 0

exercice n2

- 1- la somme des mesures des angles dans un triangle est 180 donc A+B+C=180 alors C=180-(45+60)=75
- 2- AHC est triangle rectangle et isocèle donc

AH=HC=2etAC= $2\sqrt{2}$

3- A) Dans le triangle BHC rectangle en H on a:

$$\tan \hat{B} = \frac{CH}{HB} donc \ tan 60 = \sqrt{3} \ en \ déduire \ que \ \sqrt{3} = \frac{CH}{HB} donc \ BH = \frac{CH}{tan \ \hat{B}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3} cm$$

- B) Et $\sin\widehat{B} = \frac{CH}{CB}$ donc $\sin 60 = \frac{\sqrt{3}}{2}$ en déduire que $\frac{\sqrt{3}}{2} = \frac{CH}{CB}$ donc $BC = \frac{2CH}{\sqrt{3}} = \frac{2 \times 2}{\sqrt{3}} = \frac{4\sqrt{3}}{3}$ cm
- 4- Soit K le projeté orthogonale de B sur (AC)
 - A) Ona KB× $AC = CH \times AB \ donc \ \text{KB} = \frac{CH \times AB}{AC} = \frac{2(2 + \frac{2\sqrt{3}}{3})}{2\sqrt{2}} = \sqrt{2} + \frac{\sqrt{6}}{3}$, dans le triangle CKB rectangle en K on a en déduire

$$\sin \hat{c} = \frac{KB}{BC} = \frac{\sqrt{2} + \frac{\sqrt{6}}{3}}{\frac{4\sqrt{3}}{3}} = \frac{+\sqrt{2} + \sqrt{6}}{4}$$

B) Calculer $\cos \hat{A} = \frac{AK}{AB} \ donc \ cos 45 = \frac{\sqrt{2}}{2} \ dou \ \frac{AK}{AB} = \frac{\sqrt{2}}{2} \ dou \ en \ déduire \ que \ AK = \frac{(2 + \frac{2\sqrt{3}}{3})\sqrt{2}}{2} = \frac{\sqrt{2} + \frac{\sqrt{6}}{3}}{2} = \frac{KC}{CB} = \frac{2\sqrt{2} - (\sqrt{2} + \frac{\sqrt{6}}{3})}{\frac{4\sqrt{3}}{3}} = \frac{(\sqrt{6} - \sqrt{2})}{4}$

Exercice n 3

A-
$$E=(2x+1)^3+1$$

 $=(2x+1)^3+1^3$
 $=((2x+1)+1)((2x+1)^2-(2x+1).1+1^2)$
 $=(2x+2)((2x)^2+2.2x.1+1-2x-1+1)$
 $=(2x+1)(4x^2+2x+1)$

$$F=x^3+3x^2+3x+1$$
$$=(x+1)^3$$

C- Développer les deux expressions suivantes.

$$G=(2t-1)^2-(2t+1)^2$$

$$H=(1+G)^2+8-2G$$