Série d'exercices *** 1^{ère} Année ACTIVITE NUMERIQUE I

Lycée Secondaire Ali Zouaoui " Hajeb Laayoun "

 $\mathbb{N} = \{0,1,2,3,...,50,...,100,...\}$ est l'ensemble des entiers naturels

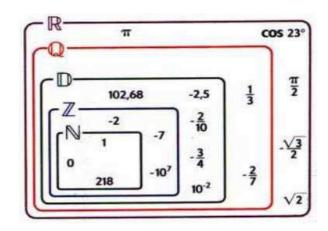
 $\mathbb{Z} = \{..., -100, ..., -50, ..., -2, -1, 0, 1, 2, 3, ..., 50, ..., 100, ...\}$ est l'ensemble des entiers relatifs.

ID: l'ensemble des nombres décimaux.

 $\mathbb{Q}:$ l'ensemble des nombres rationnelles.

 \mathbb{R} : l'ensemble des nombres réels.

On a : $\mathbb{N} \subset \mathbb{Z} \subset ID \subset \mathbb{Q} \subset \mathbb{R}$



L'arithmétique est l'étude des nombres entiers et des opérations sur ces nombres. $La \ divisibilité \ dans \ \mathbb{N}$:

Soient a et d deux entiers naturels, tels que $d \neq 0$.

On dit que d divise a, s'il existe $k \in \mathbb{N}$ tel que a=k. d. L'entier k est appelé le quotient de a par d.

d est appelé un diviseur de a.

a est appelé un multiple de d.

Division euclidienne dans \mathbb{N} :

Soient a et b deux entiers naturels, tels que b > 0.

Il existe un couple unique d'entiers naturels (q,r) tels que $\begin{cases} a = bq + r \\ 0 \le r < b \end{cases}$

q est appelé le quotient , r le reste , a le dividende et b le diviseur de la division euclidienne de a par b .

Le PGCD de deux entiers naturels :

Soient a et b deux entiers naturels non nuls.

Le PGCD de a et b est le plus grand élément de l'ensemble des diviseurs communs aux deux entiers a et b. On note par PGCD(a,b)ou $a \wedge b$.

Exemple: Calculer $a \wedge b$ avec a = 12 et b = 34

$$a = 2^2 \times 3$$
 et $b = 2 \times 17$

				4	
	1	1	2	4	Alors $D_{12} = \{1, 2, 3, 4, 6, 12\}$
ſ	3	3	6	12	$D_{12} = \{1, 2, 3, 4, 0, 12\}$

De même on trouve $D_{34} = \{1, 2, 17, 34\}$

D'où
$$D_{12} \cap D_{34} = \{1, 2\}$$
 et par suite $a \wedge b = 2$

Détermination du PGCD(a,b) en utilisant l'algorithme d'Euclide :

Soient a et b deux entiers tels que a > b > 0, on suppose que a n'est pas divisible par b.

Le PGCD(a,b) est le dernier reste non nul obtenu dans la suite des divisions successives de a par b.

Exemple: Calculer $a \wedge b$ avec a = 2499 et b = 1730

a	b	R_{I}	R_2	R_3	R_4
2499	1730	769	192	1	0
quotient	1	2	4	192	

Alors $a \wedge b = 1$ (on dit que a et b sont premiers entre eux).

Fraction irréductible :

On dit qu'une fraction est irréductible lorsqu'elle est simplifiée au maximum.

Le PPCM de deux entiers naturels :

Soient a et b deux entiers naturels non nuls.

Le PPCM de a et b est le plus petit commun multiple de a et b . On note par :

PPCM(a,b) ou $a \lor b$.

Exemple: Calculer $a \lor b$ avec a = 3465000 et b = 7586700

On a :
$$a = \underline{2}^{3} \times \underline{3}^{2} \times \underline{5}^{4} \times \underline{11} \times \overline{7}$$
 et $b = \underline{2}^{2} \times \underline{3} \times \underline{5}^{2} \times \underline{11}^{3} \times \overline{19}$

Pour calculer $a \lor b$ on prend les termes communs avec le plus grand exposant et les termes non communs.

Ainsi
$$a \lor b = 2^3 \times 3^2 \times 5^4 \times 11^3 \times 7 \times 19 = 7966035000$$

Propriété :

Pour tout $a \in \mathbb{N}^*$ et $b \in \mathbb{N}^*$, on a : $PGCD(a,b) \times PPCM(a,b) = a \times b$

Notation scientifique

Tout nombre décimal peut s'écrire sous la forme $a \times 10^n$, ou a et n sont des entiers relatifs.

Tout nombre décimal peut s'écrire sous la forme $a \times 10^n$ ou a est un nombre décimal ayant un seul chiffre non nul avant la virgule et n un entier relatif . L'écriture $a \times 10^n$ est appelée **notation scientifique** du nombre décimal .

Valeur approchée :

Soit p un entier , on dit que le nombre décimal a est une valeur approchée de b à 10^p prés si : $a-10^p \le b \le a+10^p$

Arrondi et troncature :

Pour trouver l'arrondi d'un nombre, on conserve les chiffres jusqu'au rang indiqué. Ce dernier est alors l'arrondi si le chiffre suivant est 1,2,3 ou 4 si non on lui ajoute 1. Les troncatures et les arrondis sont des valeurs approchées des nombres.

Exemple:

	5,956 310 579	$\frac{22}{7} = 3,142857142857\cdots$	$\pi = 3,141592653589\cdots$
Valeur exacte	5,956 310 579	$\frac{22}{7}$	π
Troncature à 2 chiffres	5,95	3,14	3,14
Troncature à 3 chiffres	5,956	3,142	3,141
Arrondi à l'unité	6	3	3
Arrondi à 10 ⁻²	5,96	3,14	3,14
Arrondi à 10 ⁻³	5,956	3,143	3,142

Critères de divisibilité :

- Un entier est divisible par 2 (respectivement par 5) ssi son chiffre d'unité est divisible par 2 (respectivement par 5).
- Un entier est divisible par 3 (respectivement par 9) ssi la somme des ses chiffres est divisible par 3 (respectivement par 9).
- Un entier est divisible par 4 (respectivement par 25) ssi le nombre formé par ses deux derniers chiffres est divisible par 4 (respectivement par 25).
- Un entier est divisible par 8 ssi le nombre formé par ses trois derniers chiffres est divisible par 8.

Exercice n° 01:

- 1- Déterminer *PGCD* (66,378)
- a) Par la méthode de décomposition en facteurs premiers.
- b) Par l'algorithme d'Euclide.
- 2-a) Déterminer *PPCM* (378,330)
 - b) Rendre la fraction $\frac{330}{378}$ irréductible.

Exercice n° 02:

Répondre par vrai ou faux en justifiant votre réponse :

Soient a et b deux entiers naturels non nuls

- a) Si a et b sont premiers entre eux alors $PPCM(a,b) = a \times b$.
- b) Si b = 2a alors PGCD(a,b) = a.
- c) Si b = 2a + 1 alors PGCD(a,b) = 1.
- d) Si b = 2a 1 alors PGCD(a + 1,b) = 1.

Exercice n° 03:

Soit $N = 2 \times 3 \times 4 \times 5 \times 6 \times \cdots \times 21 \times 22 \times 23$

- 1- Montrer que N+5 est divisible par 5.
- 2- Montrer que N+9 est divisible par 9.

Exercice n° 04:

Soit n un entier naturel tel que $n \ge 2$

- 1- Vérifier que $n^2 + n 1 = (n-1)(n+2) + 1$
- 2- Déterminer $PGCD(n^2 + n 2, n 1)$
- 3- Que peut-on dire des entiers $n^2 + n 2$ et n 1
- 4- En déduire $PPCM(n^2 + n 2, n 1)$

Exercice n° 05:

Dans chaque cas comment faut-il choisir l'entier naturel n pour que :

1
$$\frac{12}{n-1} \in \mathbb{N}$$
; **2** $\frac{2n+15}{n+3} \in \mathbb{N}$; **3** n divise 36 et $PGCD(n, 6) = 6$

Exercice n° 06:

Déterminer les entiers naturels a, b et c sachant que :

$$\frac{123}{7^2} = a + \frac{b}{7} + \frac{c}{7^2}$$

Exercice n° 07:

Soit *n* un entier naturel.

- 1- Montrer que $n^2 1$ est divisible par 8 pour tout $n \in \mathbb{N}$ avec n premier.
- 2- Montrer que $n^3 n$ est divisible par 3 pour tout $n \in \mathbb{N}$.

Exercice n° 08:

Soit *n* un entier naturel.

- 1- a) Vérifier que $n^2 + n + 3 = n(n+1) + 3$
 - b) En déduire que $n^2 + n + 3$ est impair.
- 2- a) Montrer que $n^3 + 3n^2 + 2n = n(n+1)(n+2)$
 - b) Montrer que $n^3 + 3n^2 + 2n$ est divisible par 3.

Exercice n° 09:

Soient m et n deux entiers naturels tel que m > n.

- 1- Montrer que m + n et m n ont la même parité.
- 2- Résoudre l'équation $m^2 n^2 = 96$

Exercice $n^{\circ} 10$:

Soit
$$A = 5^{n+2} - 5^n$$
; $n \in \mathbb{N}$

- 1- Montrer que A est divisible par 3.
- 2- Déterminer l'entier naturel n pour que $\frac{n+17}{n+4} \in \mathbb{N}$

Exercice $n^{\circ} 11$:

Soient m et n deux entiers naturels tels que PGCD(m, n) = 24 et $m \ge n$

- 1- Déterminer les facteurs premiers de m et n .
- 2- a) Sachant que $m \times n = 3456$, calculer PPCM(m, n).
 - b) En déduire m et n.