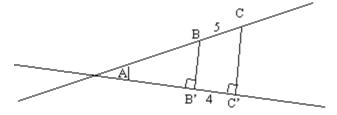

C	Lycée Nafta	Série n°1 Rapports trigonométriques	Prof : GUESMIA Aziza
	Janv.2012	d'un angle aigu	1 ^{ère} S ₄

Exercice n°1

	devant la réponse corre	•			
_	ABC rectangle en C, l	_	b mesurent respec	ctivement 40	,8 degrés et 5,47
cm. Combien mesu	re <u>le cô</u> té c de ce triang	gle?		r	
8,3 cm	7,23 cm	6,34 cm	0,14	em [0,13 cm.
2 Dans un triangle A	ABC rectangle en C, le	es côtés a et c mesu	rent respectiveme	nt 5,47 cm e	et 13,08 m.
Combien mesure l'a	angle A de <u>ce tri</u> angle?				
65,28°	22,69° 2,39°	24,72°	Impossible à c	alculer.	
	ABC rectangle en C, l	'angle A mesure 4	0,8°, le côté b me	sure 5,47 cm	n. Combien mesure
le côté a de ce tria	ngle?		<u> </u>	—	
4,72 cm	6,51 cm	3,70 cm	6,34 cm	Impos	ssible à calculer.
	quelconque ABC, les c s. Combien mesure le			5,47 cm et 7	7,14 cm, l'angle C
11,03 cm	121,71 cm	2,79 cm	1,67 cm	Impo	ssible à calculer.
	ABC rectangle en C, le		arent respectivem	ent 547 cm e	et 13,08 m.
Combien mesure ra	angle A de ce triangle?				
24,72°	65,28°	2,39°	88,63°		22,69°.
_	rectangle, connaissant culer le côté opposé à c	0 0	n côté adjacent, q	uelle formul	e s'avère la plus
sinus	cosinus		tangente.		
	rectangle, connaissant	les côtés opposé et	adjacent à un ang	gle, quelle fo	rmule s'avère la
plus appropriée pou	r calculer cet angle?	-	_		
sinus	cosinus		tangente.		

<u>Exercice n°2</u> Soit *ABC* un triangle rectangle en *A* tel que BC = 5cm et AB = 2cm. Calculer $cos\hat{B}$; \hat{B} ; \hat{C} et AC.


Exercice n°3

- 1) Construire un angle $\hat{\alpha}$ sachant que $\sin \hat{\alpha} = \frac{3}{4}$. 2) Construire un angle $\hat{\beta}$ sachant que $\cos \hat{\beta} = \frac{7}{11}$. 3) Construire un angle $\hat{\gamma}$ sachant que $\tan \hat{\gamma} = \frac{12}{11}$.

Exercice n°4

On considère la figure :

Calculer cos Â

Exercice n°5

Soit ABC un triangle rectangle en A. AB = 13.8 cm et BC = 16.5 cm Faire un dessin et calculer l'angle au sommet C.

Exercice n°6

1- Soit EFG un triangle rectangle en G, tel que GE = 7 cm, l'angle \hat{E} mesure 30°.

a. Calculer EF.

b. Calculer l'angle \hat{F} .

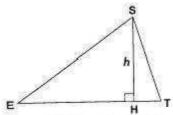
c. Calculer FG.

2- IJK est un triangle rectangle en *K*.

On sait que : JK = 3 cm et KI = 5cm. On veut calculer les angles \hat{J} et \hat{I} .

Exercice n°7

1- Construire un triangle IJK tel que : JK = 8cm; IJ = 4.8cm; KI = 6.4 cm


2- Démontrer que le triangle *IJK* est un triangle rectangle.

3- Calculer la mesure en degré de l'angle \widehat{IJK} . Donner la valeur arrondie au degré le plus proche.

Exercice n°8

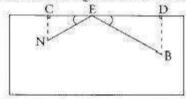
La figure ci-contre représente un triangle SET isocèle en E, et la hauteur [SH] issue de S. On ne demande pas de refaire la figure.

On sait que les segments [ES] et [ET] mesurent 12 cm et que l'aire du triangle SET est 42 cm².

1) Démontrer que la mesure h du segment [SH] est égale à 7 cm.

2) Calculer la valeur arrondie au millimètre près de la longueur EH.

3) Calculer la mesure arrondie au degré près de l'angle SET.


Exercice n°9

ABCD désigne un rectangle tel que AB = 7.2 cm et BC = 5.4 cm.

- 1- Dessiner en grandeur réelle ce rectangle et sa diagonale [AC].
- 2- Calculer la mesure arrondie au degré de l'angle ACD.
- 3- Démontrer que les angles ACD et CAB sont égaux.
- 4- La médiatrice du segment [AC] coupe la droite (AB) en E. Placer le point E et montrer que le triangle ACE est isocèle.
- 5-En déduire une valeur approchée de la mesure de l'angle DĈE.

Exercice n°10

L'unité de longueur est le centimètre.

Le rectangle ci-contre représente une table de billard.

Deux boules de billard N et B sont placées telles que ;

$$CD = 90$$
; $NC = 25$; $BD = 35$.

(Les angles ECN et EDB sont droits.)

Un joueur veut toucher la boule N avec la boule B en suivant le trajet BEN, E étant entre C et

D, et tel que : CEN = DEB.

On pose ED = x.

- 1- a) Donner un encadrement de x.
 - b) Exprimer CE en fonction de x.
- Dans le triangle BED, exprimer tan DEB en fonction de x.
- 3- Dans le triangle NEC, exprimer tan tan CEN en fonction de x.
- 4- a) En égalant les deux quotients trouvés aux questions 2) et 3), on trouve l'équation :

35(90 - x) = 25 x

On ne demande pas de le justifier.

Résoudre cette équation:

b) En déduire la valeur commune des angles CÊN et DÊB arrondie au degré.

