République tunisienne Ministère de l'éducation Direction régionale de l'éducation Tunis I Lycée l'Aouina

Devoir De Synthèse N°3

Date: 29 / 5 / 2014

Durée : 60 min

Classe : 1ère Année secondaire 5

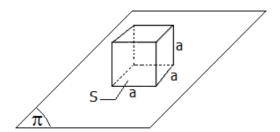
Matière : Sc. PHYSIQUES

Enseignant : Moutià M.

	Nom :
Chi	IMIE: (8 points)
	Au contact de l'eau le carbure de calcium : CaC_2 , produit de la chaux éteinte $Ca(OH)_2$
	et de l'acétylène C_2H_2 : un gaz utilisé pour la soudure oxyacétylénique et jadis (autrefois) pour l'éclairage.
	Cette réaction est très exothermique.
1.	Déduire du texte les caractères de cette réaction.
1. 2.	Le texte a cité deux utilisations de l'acétylène. Lesquelles ?
3.	Citer les produits de la réaction du carbure de calcium avec l'eau.
4.	L'équation chimique, incomplète, modélisant cette réaction est :
	$CaC_2 + 2 \dots \rightarrow C_2H_{2(gaz)} + Ca(OH)_2$
	a - Compléter cette équation.
	b - A une masse $\mathbf{m}(CaC_2)$ de carbure de calcium on ajoute de l'eau en excès , on obtient un volume $\mathbf{V_a} = 50 \mathbf{L}$
	d'acétylène, dans les conditions où le volume molaire des gaz $V_m = 25$ L.mol ⁻¹ .
L 4	
D1-	Déterminer la quantité $\mathbf{n}(C_2H_2)$ d'acétylène obtenu.
b2-	En déduire : - la quantité n (CaC ₂) de carbure de calcium réagi.
	- la masse $\mathbf{m}(CaC_2)$. Sachant que $\mathbf{M}(CaC_2) = 64 \text{ g.mol}^{-1}$.
	- la masse $\mathbf{m}(H_2O)$ d'eau réagie. On donne : $\mathbf{M}(H_2O) = 18$ g.mol ⁻¹ .
b3-	Quel est le réactif limitant ? Justifier la réponse.
b4-	A la fin de la réaction le volume d'eau restant est V_e = 10 mL.
	Déterminer le volume d'eau utilisée dans cette réaction. Sachant que dans les conditions de l'expérience
	le volume molaire de l'eau liquide $V_m(eau) = 18 \cdot 10^{-3} \text{ L.mol}^{-1}$.

Plaçons dans une région de l'espace dépourvue de charges électriques, un pendule électrique dont la boule (B) porte une charge électrique négative q<0

Approchons de la boule (B) l'extrémité d'une baguette en verre (A) qui porte une charge électrique q


On constate que la baguette (A) attire la boule (B) avec la force $F_{A/B}$.

1- Enoncer le principe d'interaction.

- 2- Entre la boule (B) et la baguette (A) existe une interaction. $\vec{F}_{A/B}$ est l'un des éléments de l'interaction (B) (A).
 - a- De quel type d'interaction s'agit-il?
 - b- Donner les caractéristiques : point d'application, direction et sens de $\overline{F}_{B/A}$ l'autre élément de cette interaction.

- c- Représenter, sur la figure ci-dessus (celle de droite), le deuxième élément de cette interaction.
 - II La figure ci-dessus représente un solide de forme cubique d'arête a = 10 cm et de masse m = 2 kg, qui repose sur un plan horizontal (π) , exerçant une pression **p** sur ce plan.

- 1- Déterminer l'aire de la surface pressée S.
- 2- Calculer la valeur du poids de ce cube. On donne $\overrightarrow{\mathbf{ll} \mathbf{g}} \mathbf{ll} = 10 \text{ N.kg}^{-1}$
- 3- En déduire la valeur de la pression **p** exercée par le cube sur le plan.