Durée: 1 heure Le 23/01/2010 Niveau: 2ièmme année Secondaire

Noter bien : la calculatrice est autorisée.

Exercice: 1 (5 points)

Préciser en justifiant la ou les réponses correctes dans chacun des cas suivants.

- 1) Tout entier formé de trois chiffres identiques est divisible :a) par 3
- b) par 9
- c) par 37

- 2) Pour tout chiffre non nul a, L'entier A=aaa6 est divisible :a) par 9
- b) par 3 c) par a+2

- 3) L'entier 11 divise : a) 31835947
- b) 2²⁰ 1
- c) 10^4+1
- c) a=6

Professeur: Nabil ZRIG

- 4) Si l'entier n=2a3a1 est divisible par 11 et 3 alors : a) a=0
- b) a=3
- 5) Prendre un entier x à quatre chiffres, on désigne par y l'entier formé par les mêmes chiffres dans l'ordre inverse. (si x=abcd alors y=dcba, avec a>d).a) $x+y\in M_{11}$ b) $x-y\in M_9$

Exercice: 2 (8 points)

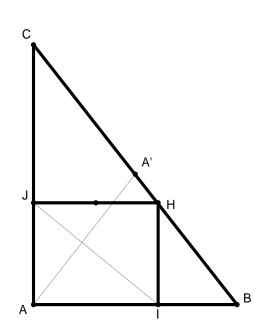
Soit (u) la suite définie sur IN par $\begin{cases} u_0 = -5 \\ u_{n+1} = \frac{25}{10 - 11} \end{cases}$ pour tout $n \in IN$

- 1) Calculer u₁ et u₂.
- 2) Soit (v) la suite définie sur IN par $v_n = \frac{1}{u_1 5}$.
 - a) Montrer que $v_{n+1} = \frac{10 u_n}{5(u_n 5)}$.
 - b) Montrer que v_n est une suite arithmétique de raison $\frac{-1}{5}$.
 - c) Exprimer v_n puis u_n en fonction de n.
- 3) Soit $S_n = V_0 + V_1 + V_2 + \dots + V_n$. Montrer que : $S_n = \frac{-(n+1)^2}{40}$

Exercice: 3 (7 points)

Dans la figure ci-contre ABC est un triangle rectangle en A, A' est le milieu de [BC], H est le projeté orthogonal de A sur (BC), I et J sont les projetés orthogonaux de H respectivement sur (AB) et (AC) et E est le milieu de [HC]. On se propose de démontrer que (IJ) \perp (AA')

- 1) Soit h l'homothétie de centre C qui transforme B en H.
 - a) Déterminer h(A).
 - b) Montrer que h (A')=E.
- 2) On admet que les droites (IJ) et (JE) sont perpendiculaires, montrer que (IJ) \perp (AA').



Durée: 45 minutes

Le 17/01/2009 Niveau : 2^{ièmme} année Secondaire

Professeur: Nabil ZRIG

Noter bien : la calculatrice est autorisée.

Exercice: 1 (10 points)

Soient $f(x) = x^3 - 6x^2 + 11x - 6$ et $g(x) = x^4 + x^2 - 2$.

- 1) Calculer f(1) puis résoudre dans IR l'équation : f(x) = 0.
- 2) Factoriser g(x).
- 3) On pose h(x) = $\frac{(x-1)(x^2-5x+6)}{g(x)}$.
- a) Déterminer l'ensemble D des réels x pour les quels h(x) a un sens puis simplifier h(x).
- b) Résoudre dans IR l'équation $h(x) = \frac{1}{x^2 + 2}$.
- c) Résoudre dans IR l'inéquation $\sqrt{(x^2 + 2)h(x)} < 1$.

Exercice: 2 (10 points)

O et I sont deux points fixes tels que OI = 3, et C est le cercle de centre O et de rayon OI.

- 1) a) Construire O' l'image de O par l'homothétie de centre I et de rapport $\frac{-1}{2}$.
 - b) Déterminer alors et construire C' l'image de C par l'homothétie $h_{\left(I,\frac{-1}{2}\right)}$.
- 2) M est un point variable de C distinct de I. La droite (IM) recoupe C' en N.
 - a) Montrer que : $h_{\left(l,\frac{-1}{2}\right)}(M) = N$.
 - b) En déduire l'ensemble des points N lorsque M varie sur C \{|}.
- 3) a) Construire O" tel que : $h_{\left(l,\frac{-2}{3}\right)}(O') = O''$.
 - b) Déterminer alors et construire C'' l'image de C' par l'homothétie $h_{\left(l,\frac{-2}{3}\right)}$.
 - c) C" et (MN) se coupent en I et M". Montrer que : $\overrightarrow{IM''} = \frac{1}{3}\overrightarrow{IM}$.
 - d) En déduire l'ensemble des points M" lorsque M varie sur C \{|}.

Bon travail