Prof: Dhahbi.A	Devoir de contrôle n°1	Classes: 2 ^{ème} S ₁ et 2 ^{ème} S ₂
Lycée Karker	Mathématiques	Durée :1 heure ;Date :21/10/ 2008

Partie algèbre

EXERCICE N°1: (2,5 points)

Nombre x	Valeur approchée de x à 10 ⁻² prés par défaut	Valeur approchée de x à 10 ⁻² prés par excès	Arrondi de x à 10 ⁻³	Ecriture scientifique	Ordre de grandeur
17,345678					

EXERCICE N**°**2 : (5 ,5 points)

Résoudre dans IR :

a)
$$\sqrt{x^2 + 3} = x + 1$$
.

$$b) \quad \frac{-2x+1}{x} \ge \frac{2}{3}.$$

c)
$$2x^2 - 3x + 1 = 0$$
.

EXERCICE N°3: (2 points)

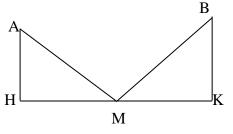
Une personne a deux échelles de même longueur.

Il dispose de la façon indiquée dans la figure, ci contre deux murs

[AH] et [BK] ; trouver la longueur de cette échelle sachant que:

AH = 3m, BK = 4m et HK = 5m.

Indication: on pose MH = x puis déterminer AM et BM



Partie géométrie

EXERCICE N°1: (5 points)

Soit (O, \vec{i}, \vec{j}) un repère orthonormé du plan, on donne les points A, B et C tels que :

$$\overrightarrow{OA} = -2\overrightarrow{i} - 3\overrightarrow{j}$$
, $\overrightarrow{OB} = -4\overrightarrow{i} + 4\overrightarrow{j}$ et C(3, 6).

- 1°/a) Déterminer les composantes des vecteurs \overrightarrow{AB} et \overrightarrow{AC} dans la base (i, j).
 - b) Déduire que les points A, B et C ne sont pas alignés.
- 2°/a) Calculer AB et BC.
 - b) Montrer que \overrightarrow{AB} et \overrightarrow{BC} sont orthogonaux.
 - c) En déduire la nature du triangle ABC.

EXERCICE N°2: (5 points)

On donne les vecteurs $\vec{U} \binom{m-1}{2m}$ et $\vec{V} \binom{-4}{m}$ dans la base (\vec{i}, \vec{j}) .

- $1^\circ\!/$ Pour quelles valeurs de m, les vecteurs \overrightarrow{U} et \overrightarrow{V} sont-ils colinéaires ?
- 2° / Dans la suite on prend m = 2.
 - a) Justifier que $(\overrightarrow{U},\overrightarrow{V})$ est une base de l'ensemble des vecteurs du plan.
 - b) Ecrire \vec{U} , \vec{V} et \vec{U} 2 \vec{V} en fonction de \vec{i} et \vec{j} .
 - c) Déduire les composantes de \vec{i} et de \vec{j} dans la base (\vec{U}, \vec{V})

Prof: Dhahbi. A	Devoir de contrôle n°2	Classes: 2ème Sciences 1 et 2
Lycée Karker	Mathématiques	Durée :1 heure ;Date :18/11/ 2008

EXERCICE Nº1: (4 points)

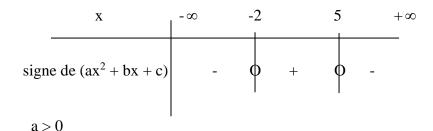
Pour chaque proposition, indiquer si elle est vrai ou fausse. Justifier votre réponse

$$1^{\circ}/ x^2 - x \ge 1 S_{IR} =] - \infty, 1].$$

$$2^{\circ}/\frac{4}{x} \le 3 - 2x$$
 $S_{IR} = [-1,1].$

 3° / G barycentre des points pondérées (A,3) et (B,7) alors G \in [AB].

 4° / On considère le tableau de signe du trinôme : $ax^2 + bx + c$



EXERCICE N°2 (5 points)

Dans la figure ci-contre: (L'unité est le centimètre)

I est un point variable de [AB] et I est un point variable de [AB]

tels que (IJ) et (AC) sont parallèles.

On pose
$$AB = 4$$
, $AC = 8$ et $BI = x$.

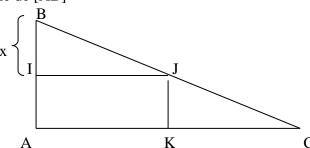
 1° / Montrer que IJ = 2x.

2°/ a) Montrer que l'aire, noté A(x), du quadrilatère IJKA est : $A(x) = -2x^2 + 8x$

b) Vérifier que
$$A(x) = -2(x-2)^2 + 8$$
.

 3° / Trouver x pour que A(x) soit maximale.

 4° / Peut on trouver x pour que A(x) soit égale à 6cm²?



EXERCICE N°3:(3 points)

On pose $E(x) = x^2 - (3 + \sqrt{5})x + 3\sqrt{5}$.

1°/ Calculer E($\sqrt{5}$).

 2° / En déduire sans calculer le discriminant Δ les racines de l'équation E(x) = 0.

EXERCICE Nº4: (8 points)

Soit ABC un triangle.

1°/ Construire le point I barycentre des points pondérés (B,2) et (C,-3).

2°/ Soit G le point définie par : 2 \overrightarrow{GB} - 3 \overrightarrow{GC} - \overrightarrow{GA} = $\overrightarrow{0}$.

- a) Montrer que G, I et A sont alignés.
- b) Construire le point G.

 3° / Exprimer le vecteur $2\overrightarrow{AB} - 3\overrightarrow{AC}$ en fonction de \overrightarrow{IA} .

4°/ Déterminer et construire l'ensemble des points M du plan tels que :

$$\|2\overrightarrow{MB} - 3\overrightarrow{MC} - \overrightarrow{MA}\| = \|2\overrightarrow{AB} - 3\overrightarrow{AC}\|$$

Prof: Dhahbi. A	Devoir de synthèse n°1	Classes: 2ème Sciences 1 et 2
Lycée Karker	Mathématiques	Durée :2 heure; Date :06/12/ 2008

EXERCICE Nº1: (1,5points)

Pour chaque proposition, indiquer si elle est vrai ou fausse. Justifier votre réponse

1°/
$$\frac{2}{x} \le 1 - 3x$$
 $S_{IR} = [-1,1].$

2°/ L'ensemble de définition de la fonction $f(x) = \frac{1}{|x|-1}$ est IR\ {-1,1}.

3°/ La fonction $g(x) = 12x - 8x^2 - x^3 + x^4 + \frac{1}{x}$ est polynôme de degré 4.

EXERCICE Nº2 (4 points)

On donne ABCD un carré de coté 4cm. Les points I, J, K et L appartiennent respectivement aux segments [AB], [BC], [DC] et [AD] tels que :

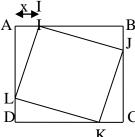
$$AI = BJ = CK = DL = x$$

Comme le montre la figure ci-contre :

1°/ a) Montrer que l'aire, noté A(x), du quadrilatère IJKL est: $A(x) = 2x^2 - 8x + 16$ b) Vérifier que $A(x) = 2(x - 2)^2 + 8$.

 2° / Trouver x pour que A(x) soit minimale.

3°/ Trouver x pour que A(x) soit supérieur ou égale à 10 cm²?



EXERCICE N°3:(6 points)

Soient $f(x) = 2x^3 + 3x^2 - 11x - 6$ et $g(x) = x^4 - 4x^3 + 6x^2 - 5x + 2$

1°/ a) Vérifier que 2 est une racine de f.

b) Déterminer les réels a, b, et c tel que $f(x) = (x-2)(ax^2 + bx + c)$.

c) Résoudre dans IR, l équation f(x) = 0.

2°/a) Vérifier que 2 et 1 sont deux racines de g.

b) Montrer que g(x) = $(x-2)(x-1)(x^2-x+1)$.

3°/ Soit la fonction h tel que h(x) = $\frac{f(x)}{g(x)}$.

a) Déterminer l'ensemble de définition de h.

b) Simplifier h(x).

c) Résoudre dans IR, 1 inéquation $h(x) \ge 0$.

EXERCICE N°4: (8,5 points)

Soit ABC un triangle.

Soient I le barycentre des points pondérés (B,5) et (C,3) et J barycentre des points pondérés (A,8) et (C,-3). 1°/ a) Construire les points I et J.

b) Montrer que $5 \overrightarrow{JB} + 8 \overrightarrow{IA} = \overrightarrow{0}$.

c) En déduire que les droites (AI) et (BJ) sont parallèles.

 2° / Soit G le point définie par : $8\overrightarrow{GA} + 5\overrightarrow{GB} - 3\overrightarrow{GC} = \overrightarrow{0}$.

a) Montrer que G est le milieu de [BJ].

b) Soit K le barycentre des points pondérés (A, 8) et (B,5). Montrer que les points G, K et C sont alignés.

c) Montrer que les droites (AB), (GC) et (IJ) sont concourantes.

4°/ Déterminer et construire l'ensemble des points M du plan tels que:

$$\left\| 5\overrightarrow{MB} + 3\overrightarrow{MC} \right\| = 8 \left\| \overrightarrow{MA} - \overrightarrow{MB} \right\|$$

Prof: Dhahbi.A	Devoir de synthèse n°1	Classes: $2^{\grave{e}me}$ Economie et servise
Lycée Karker	Mathématiques	Durée :1 heure; Date :13/12/ 2008

EXERCICE Nº1:

Le prix d un ordinateur subit une augmentation de 50DT le 1^{er} janvier de chaque année.

On désigne par P_0 son prix le 1^{er} janvier 2000 et P_n son prix le 1^{er} janvier de 1 année (2000 + n), $n \in IN$. Le 1^{er} janvier 2000, le prix de 1 ordinateur était 1200DT.

- 1°/ Déterminer le prix de l'ordinateur le 1^{er} janvier 2001 et le prix de l'ordinateur le 1^{er} janvier 2005.
- $2^{\circ}/a$) Exprimer P_{n+1} en fonction de P_n .
 - b) Montrer que P_n est une suite arithmétique de raison 50.
 - c) Ecrire P_n en fonction de n.
- 3°/ A quel date le prix de l ordinateur sera-t-il pour la première fois plus que 1600DT.

EXERCICE N°2:

- $(U_n)_{n\geq 0}$ est une suite géométrique telle que $U_3=3$ et $U_6=24$.
- 1°/ Montrer que U est une suite géométrique de raison 2 et de premier terme $U_0 = \frac{3}{8}$.
- 2°/ Déterminer son terme général Un en fonction de n.

EXERCICE N°3:

On considère la suite $(U_n)_{n\geq 0}$ telle que $U_n = (\frac{1}{2})^n$, $n \in IN$.

- 1° / Calculer U_0 , U_1 et U_2 .
- 2°/ Montrer que U est une suite géométrique dont on précisera la raison et le premier terme.

$$3^{\circ}$$
/ Soit S = $1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \frac{1}{2^5}$

Prof: Dhahbi. A	Devoir de contrôle n°3	Classes: 2ème Sciences 1 et 2
Lycée Karker	Mathématiques	Durée: 1 heure; Date: 20/01/ 2009

EXERCICE N°1:(2,25 points)

Pour chaque proposition, indiquer si elle est vrai ou fausse.

Nombres	Divisible par 8	Divisible par 4	Divisible par 11
2168			
4736			
5139178			

EXERCICE N° 2:(3 points)

Soit M = 24849

1°/ Vérifier que M est divisible par 9 et 11.

2°/ Trouver les chiffres x et y pour que entier 2x84y soit divisible par 9 et 11.

EXERCICE N°3: (4,75 points)

- 1°/a) Montrer que si un entier naturel n divise 335 et divise 306 alors n divise 29.
 - b) En déduire que 335 et 306 sont premier entre eux.
- 2°/a) Ecrire l'ensemble des entiers naturels diviseurs de 6.
 - b) Vérifier que $\frac{2n+8}{n+1} = 2 + \frac{6}{n+1}$.
 - c) Déterminer tous les entiers n tels que $\frac{2n+8}{n+1}$

EXERCICE N°4: (10 points)

Soit ABC un triangle quelconque et H son orthocentre (Voir figure).

- 1°/ Construire les points B' et C' images respectives des points B et C par la translation de vecteur \overrightarrow{AH} .
- 2°/ Montrer que le quadrilatère BCC'B' est un rectangle.
- 3°/a) Construire les droites Δ et Δ' images respectives des droites (BH) et (CH) par la translation de vecteur \overrightarrow{AH} .
 - b) Soit H' le point d' intersection des deux droites Δ et Δ' . Montrer que H' est l'image de H par la translation de vecteur \overrightarrow{AH} .
 - c) En déduire que H est le milieu du segment [AH'].
- 4° / Soit (C) et (C') deux cercles de diamètre respectifs [BC] et [B'C']. La droite (CH) coupe (C) en E et la droite (C'H') coupe (C') en E'.

Montrer que E' est limage de E par la translation de vecteur \overrightarrow{AH} .

Prof: Dhahbi. A	Devoir de contrôle n°4	Classes: 2ème Sciences 1 et 2
Lycée Karker	Mathématiques	Durée: 1 heure; Date: 10/02/ 2009

EXERCICE Nº1:

Soit (U_n) une suite arithmétique de raison r et de premier terme $U_0 = 8$ et tel que $U_5 = -12$.

- 1° / Montrer que la raison de cette suite est r = 4.
- 2°/ Ecrire son terme général Un en fonction de n.
- 3° / Calculer U_{10} .
- 4° / Déterminer l'indice n sachant que $U_n = -60$.

EXERCICE N°2:

Soit la suite (U_n) définie par: $U_0 = -1$ et pour tout $n \in IN$, $U_{n+1} = U_n + 5$.

- 1°/ Montrer que U_n est une suite arithmétique dont on déterminera sa raison.
- 2°/ Exprimer Un en fonction de n.
- 3° / Déterminer l'indice n sachant que $U_n = 79$.
- 4° / Soit $S_n = U_0 + U_1 + U_3 + \dots + U_n$.
 - a) Calculer S_n en fonction de n.
 - b) Déterminer S₉.

EXERCICE N°3:

Soit (C) un cercle de centre O et de diamètre [AB] tel que AB = 6, $M \in (C) \setminus \{A, B\}$ et I = M*A. $1^{\circ}/$ Soit h l'homothétie de centre A et de rapport 2.

- a) Montrer que h(I) = M et h(O) = B.
- b) Déterminer et construire les droites Δ et Δ ' images respectives des droites (BI) et (OM) par h.
- c) La droite (OM) coupe la droite (IB) en G et Δ coupe Δ ' en J. Montrer que A, G et J sont alignes.
- 2°/a) Montrer que G est le centre de gravite du triangle ABM.
 - b) En déduire que G est l'image de M par l'homothétie de centre O et de rapport $\frac{1}{3}$.
- 3°/ Déterminer et construire l'ensemble des points G lorsque M varie. En déduire l'ensemble des points J lorsque M varie

EXERCICE N°4:

1°/ Dans la figure, on a : [AB] et [CD] deux segments tels que (AB) parallèle a (CD) et AB ≠ CD. Cocher la bonne réponse :

- a) On ne peut pas trouver une homothétie qui transforme [AB] en [CD]
- b) Il existe une unique homothétie qui transforme [AB] en [CD]
- c) Il existe exactement deux homothéties qui transforment [AB] en [CD].
- 2°/ (C) et (C') deux cercles. Répondre par Vrai ou Faux.
 - a) On ne peut pas trouver une homothétie qui transforme (C) en (C').
 - b) On peut trouver une seule homothétie qui transforme (C) en (C').
 - c) Si (C) et (C') ne sont pas isométrique. Il existe exactement deux homothéties qui transforment (C) en (C').

Prof: Dhahbi. A	Devoir de synthèse n°2	Classes: 2èmeSciences 1 et 2
Lycée Karker	Mathématiques	Durée :2 heure; Date :03/03/ 2009

Exercice N°1:(4 points)

 1° / Soit n un entier naturel non nul. On pose A = 3 n + 4 et B = 2 n - 1

Soit d un entier naturel non nul qui divise A et B.

- a) Montrer que d divise (2A 3 B).
- b) E n déduire que d divise 11.
- 2°/ Pour chaque proposition, indiquer si elle est vrai ou fausse. Justifier votre réponse
 - a) Le produit de deux entiers naturels consécutifs est un entiers pair
 - b) Le nombre 24130214 est divisible par 11.
 - c) Le reste de la division euclidienne de 273 par 11 est 9.

EXERCICE N°2: (4 points)

Soit la suite (U_n) définie par: $U_0 = -1$ et pour tout $n \in IN$, $U_{n+1} = 2U_n - 1$.

- 1°/a) Calculer U₁, U₂ et U₃.
 - b) Montrer que la suite (U_{n)} n est ni une suite arithmétique, ni une suite géométrique.
- 2° / Soit la suite (V_n) définie sur IN par: V_n = U_n 1.
 - a) Montrer que la suite (V_n) est une suite géométrique de raison q = 2 et de premier terme $V_0 = -2$.
 - b) Exprimer (V_n) en fonction de n. En déduire U_n en fonction de n.

EXERCICE N°3: (3 points)

Soit (U_n) une suite géométrique de premier terme $U_0 = 3$ et de deuxième terme $U_1 = 12$.

- 1° / Montrer que la raison q de cette suite est q = 4.
- 2°/ Ecrire le terme général de la suite U_n en fonction de n.
- 3°/ Calculer U₄.
- 4° / Soit S = U₀ + U₁ + U₃ + + U₁₀. Déterminer S.

EXERCICE N°4: (5,5 points)

ABC est un triangle rectangle isocèle en A Le point I est le milieu de segment [BC]. (Voir figure).

 1° / Construire la droite Δ passant par C et perpendiculaire à (BC).

Soient le point K intersection de Δ et (AB) et le point J milieu de segment [CK].

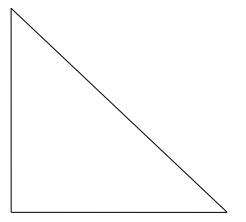
- 2°/ Soit r la rotation directe de centre A et d'angle $\frac{\pi}{2}$.
 - a) Déterminer l'image de B par la rotation r.
 - b) Déterminer les images des droites (AC) et (BC) par r.
 - c) En déduire l'image du point C par r.
- 3°/ Soit (C) le cercle circonscrit au triangle ABC.
 - a) Montrer que K est l'image de I par r.
 - b) Déterminer et construire (C') image de (C) par r.

EXERCICE N°5: (3,5 points)

1°/ Calculer sans utiliser une calculatrice:

A =
$$\cos(\frac{\pi}{9}) + \cos(\frac{8\pi}{9}) - \cos(\frac{2\pi}{9}) - \cos(\frac{7\pi}{9}).$$

- 2° / Soit 1'expression : $f(x) = \cos^2 x + \sin x$
 - a) Montrer que pour tout $x \in [0, \pi]$, on a: $f(\pi x) = f(x)$.
 - b) Déduire $f(\frac{5\pi}{6})$ et $f(\frac{3\pi}{4})$



Prof: Dhahbi. A	Devoir de synthèse n°2	Classes: $2^{\grave{e}^{me}}$ Economie et servise
Lycée Karker	Mathématiques	Durée :1 heure; Date:03/02/ 2009

EXERCICE Nº1:

Soit la fonction affine par intervalle définie sue IR par

$$F(x) = \begin{cases} 3x+5 & \text{si } x \le 0 \\ -x+5 & \text{si } 0 \le x \le 6 \\ -1 & \text{si } x \ge 6 \end{cases}$$

- 1°/ Calculer f (-2), f (0), f (6) et f (8).
- 2°/ Représenter f dans un repère orthogonal (O, I, J).
- 3°/ Déterminer le sens de variation de la fonction f sur chacun des intervalles] $-\infty$,0], [0,6] et [6, + ∞ [.

EXERCICE N°2:

Le graphique ci-dessous représente deux fonction f et g :

- 1° / Reconnaître la courbe de f ainsi que celle de g sachant que f (0) = 5 et g (0) = 1.
- 2°/ A partir de ce graphique, Déterminer les fonction affines par intervalle f et g.
- 3° / Résoudre graphiquement : f(x) = 2, g(x) = 0, g(x) = f(x) et f(x) > -1.

EXERCICE N° 3:

1°/ Résoudre dans IR² le système (S):
$$\begin{cases} x + y = 3 \\ 2x + y = 4 \end{cases}$$

- 2°/ Une librairie propose aux clients deux types de cahier : normal et spécial.
 - * Si un client achète un cahier normal et un autre spécial il paye 3 dinars.
 - * Si un client achète deux cahiers normaux et un autre spécial il paye 4 dinars.

Trouver le prix de chaque type de cahier.

EXERCICE N°2:

ABC est un triangle rectangle isocèle en A. Les points O, I et J sont les milieux respectifs des segments [BC], [AC] et [AB].

On considère la translation de vecteur \overrightarrow{OC} .

- 1°/ Quelle sont les images de B et de J par $t_{\overline{oc}}$?
- 2° / K est l'image de A par la translation de vecteur \overrightarrow{OC} .

Montrer que les points O, I et K sont alignes et préciser la position de I sur le segment [OK].

- 3°/ a) Déterminer l'homothétie h qui transforme B en J et C en I.
 - b) Quelle sont l'images de O par h?
- 4°/(C) le cercle circonscrit au triangle ABC (cercle de centre O et de diamètre [BC].
 - a) Tracer (C).
 - b) Déterminer et construire (C') image du cercle (C) par l'homothétie h.
 - c) Montre que (C') passe par les points A, J, O et I.
- 5°/ Soit r la rotation directe de centre A et l'angle $\frac{\pi}{2}$.
 - a) Déterminer les images de O et C par r.
 - b) Déterminer l'images de la droite (AC) par r.
 - c) construire I' l'images du point I par la rotation r.
 - 6°/ a) Déterminer l'angle de la rotation indirecte de centre I qui transforme O en J et C en A. On note cette rotation par r.
 - b) Montrer que r(J) = K.

EXERCICE N°2:

A et B deux points du plan. On considère l'application f du plan dans lui-même, qui a tout point M associe le point N tel que: $\overrightarrow{AN} = 3\overrightarrow{AM} - 2\overrightarrow{BM}$.

1°/ Exprimer \overrightarrow{MN} en fonction de \overrightarrow{AB} .

2°/ En déduire que f est une translation dont on déterminera le vecteur.

EXERCICE N°2:

$$1^{\circ}$$
/ On pose P(x) = $-4x^2 + \sqrt{3}x + 9$

- a) Calculer P($\sqrt{3}$).
- b) En déduire sans calculer le discriminant Δ les racines de l'équation E(x) = 0.
- 2° / Factoriser E(x).

3°/ Résoudre dans IR, l'équation
$$\frac{4x^2 - 4\sqrt{3}x}{P(x)} = x - \frac{3\sqrt{3}}{4}$$