Devoir de synthèse n°3 Année Scolaire 2000 - 2001 2ème Année.

Exercice n° 1:

On donne
$$f(x) = -(x-2)^2$$
 et $g(x) = \frac{2}{x-1}$

1/Etudier f et g et tracer C_f et C_g dans un même repère orthonormé (o, \vec{i}, \vec{j})

 $2/On pose h(x) = -x^2 + 4x - 2$

- a) Vérifier que h(x) = f(x) + 2 puis tracer C_h à partir de C_f et donner son tableau de variation.
- b) On donne Δ la droite d'équation y = x 2 Chercher les coordonnées des points d'intersection de C_f et Δ puis résoudre graphiquement l'inéquation $h(x) x + 2 \ge 0$.
- 3/ a) Calculer les coordonnées des points d'intersection de C_f et C_h.
 - b) Résoudre graphiquement l'inéquation $h(x) \ge g(x)$.
- 4/ Soit la fonction k définie par :

$$\begin{cases} k(x) = g(x) \text{ si } x \in \left] - \infty, 0 \right] \\ k(x) = h(x) \text{ si } x \in \left[0, 2 \right] \\ k(x) = g(x) \text{ si } x \in \left[2, + \infty \right] \end{cases}$$

- a) Construire C_k puis donner son tableau des variations.
- b) Déterminer graphiquement et suivant les valeurs de m le nombre des solutions de l'équation k(x)=m

Exercice $n^{\circ} 2$:

Dans un repère orthonormé (O, \vec{i}, \vec{j}) on donne

$$\mathcal{C}_m = \{M(x, y); x^2 + y^2 + (2m + 4)x + (2m - 2)y + 6m - 1 = 0 \}$$

- 1) a) Montrer que \mathscr{C}_m est un cercle pour tout réel m dont-on précisera le centre I_m et le rayon R.
 - b)Montrer que I_m est un point de la droite $\mathbb{D}: x y + 3 = 0$.
- a) On pose m = 1 et ℰ₁ le cercle obtenu pour m =1. Donner les coordonnées du centre I₁et son rayon R₁.
 b) On donne le point A(-2, √3). Vérifier que A ∈ ℰ₁ puis écrire une équation cartésienne de la tangente
- à \mathcal{C}_1 en A.
- 3) On donne la droite Δ_m : 3x 4y + m 1 = 0. Déterminer m pour que Δ_m soit tangente à \mathcal{C}_1 .
- 4) Soit B (1, -2) et h l'homothétie de centre B et de rapport $\frac{3}{2}$. Ecrire une équation cartésienne du cercle $\mathscr{C}'_1 = h(\mathscr{C}_1)$.

Exercice $n^{\circ} 3$:

- 1) Soit $x \in [0,\pi]$ et $f(x) = 3\cos x 4\cos x \cdot \sin^2 x$.
 - a) Calculer $f(\frac{\pi}{3})$, $f(\frac{2\pi}{3})$ et $f(\frac{\pi}{2})$.
 - b) Montrer que $f(\pi x) = -f(x)$.
 - c) Montrer que $f(x) = \cos x (4\cos^2 x 1)$ puis résoudre dans $[0, \pi]$ l'équation f(x) = 0.
- 2) Résoudre dans $[0, \pi]$ l'équation $2\sin^2 x + (\sqrt{3} 2)\sin x \sqrt{3} = 0$.

En déduire que pour tout $x \in [0, \Pi]$ $2 \sin^2 x + (\sqrt{3} - 2) \sin x - \sqrt{3} \ge 0$.