L.S.Lamta

prof: Ben Amor.N Ben Salem.I

<u>Devoir de contrôle N°:5</u> - Mathématiques-

Classe: 2ème. sciences

Date: 13/04/2009

Durée: 1 heure

Exercice 1 (3 pts)

I) On donne les fonctions suivantes définies par :

$$f(x) = |x-1|+3$$
 ; $g(x) = \frac{x^2}{x^2+1}$; $h(x) = x^2+3$; $k(x) = \sqrt{x}$

Répondre par vrai ou faux :

$$1/D_f = IR \setminus \{1\}$$

$$2/D_g = IR \setminus \{-1\}$$

3/ h est une fonction paire

4/ k est une fonction impaire

5/ h admet un minimum au point x=3

II) Soit L une fonction définie sur IR telle que L(x) + L(-x) = 0

Choisir la bonne réponse :

a/ L est paire

b/ L est impaire

c/ L est ni paire ni impaire

Exercice 2 (3pts)

Soit la fonction f définie sur IR par $f(x) = x^2 + 4x + 7$

1/ Calculer f(-2)

2/ Calculer f(x) - f(-2)

3/ Déduire que f admet un minimum que l'on précisera

Exercice 3(6ts)

Dans un repère orthonormé (0; \vec{i} ; \vec{j}) on donne les ensembles suivants :

$$(\zeta) = \{M(x,y); x^2+y^2-2x-2y+1=0\}$$

$$(\zeta') = \{M(x,y); x^2+y^2+6x-8y+9=0\}$$

1/ Montrer que (ζ) et (ζ') sont deux cercles

2/ Préciser respectivement leurs centres I et I' et leurs rayons R et R'

3/ Montrer que (ζ) et (ζ') sont tangentes extérieurement

Exercice 4 (8 pts)

Soit la fonction f définie par
$$f(x) = \frac{2x+5}{x-1}$$

On désigne par (C) sa représentation graphique dans un repère orthonormé (o ; \vec{i} ; \vec{j})

1/ Déterminer Df l'ensemble de définition de f

2/ Déterminer le réel x tel que A(x, 9) \in (C)

3/ Montrer que pour tout
$$x \in D_f$$
; $f(x) = 2 + \frac{7}{x-1}$

4/ Soient a et b deux réels de IR \{1}

a/ Montrer que f(a) -f(b) =
$$\frac{7(b-a)}{(a-1)(b-1)}$$

b/ Déduire les variations de f sur]1; $+\infty$ [puis sur]- ∞ ; 1[