Le 16/04/2011

(Mathématiques)

Prof: **Taïeb**Durée : **1h Classe** : 2^{éme}**SC**₁

Exercice n°1:(9pts)

Soit la suite u_n définie par : $u_0 = 1$ et $u_{n+1} = \frac{u_n}{1 + 2u_n}$ pour tout $n \in IN$

- **1-** Calculer u_1 et u_2
- 2- Montrer que la suite (u_n) ni arithmétique, ni géométrique
- **3-** Soit la suite $v_n = \frac{1}{u_n}$.
 - a- Calculer vo
 - b- Montrer que (v_n) est une suite arithmétique de raison r = 2
- **4-** Exprimer v_n en fonction de n. Puis Exprimer u_n en fonction de n
- **5-** Calculer $S = v_1 + \dots + v_{10}$

Exercice n°2: (5pts)

Soit (u_n) une suite géométrique tel que : $u_5 = 1$ et $u_2 = 8$

- **1-** Montrer que la raison de (u_n) égale à $\frac{1}{2}$
- 2- Déterminer uo
- 3- Déterminer son terme général
- **4-** Calculer $S = u_0 + u_1 + \dots + u_9$

Exercice n°3: (6pts)

Les questions sont indépendantes :

- 1- Soit $\alpha \in \left]0, \frac{\pi}{2}\right[$ tel que $\sin \alpha = \frac{4}{5}$. Déterminer $\cos \alpha$ et $\tan \alpha$
- 2- Sans utiliser la calculatrice calculer : $\cos\frac{\pi}{8} + \cos\frac{2\pi}{8} + \cos\frac{3\pi}{8} + \cos\frac{5\pi}{8} + \cos\frac{6\pi}{8} + \cos\frac{7\pi}{8}$
- **3-** Résoudre dans $[0,\pi]$ l'équation : $2\cos^2 x 3\cos x + 1 = 0$
- **4-** Soit ABC un triangle tel que AB = 2 et AC = $\sqrt{3}$ et $\widehat{BAC} = \frac{\pi}{6}$
 - a- Déterminer la distance BC
 - b- Déterminer le rayon du cercle circonscrit au triangle ABC

(On rappel que dans un triangle
$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}} = 2R$$
)