

2ème Sciences: Sc7

Durée: 1heures Date: le 17 / 11 / 2008

Coefficient: 4

Devoir de contrôle N°2 Mathématiques

Sujet B

Exercice N°1: (4,5 points)

I – Compléter le tableau suivant :

Inégalité(s)	Intervalle(s)
a)	$x \in]-\infty,2]$
$-1 < x \le \frac{3}{4}$	b)
$x > -\sqrt{2}$	c)
d)	$x \in]-\infty,-5] \cup]3,+\infty[$
e)	$x \in \left[\frac{7}{8}, +\infty \right] \cap \left[\frac{3}{4}, \frac{8}{9} \right[$
$ x+1 \le 3$	f)

II – Répondre par Vrai ou Faux :

1)
$$\sqrt{3}$$
 est une solution de l'équation : $-x^2 + \sqrt{3}x - 2 = -2$.

2) Si $\Delta > 0$ alors l'équation de second degré admet exactement deux solutions.

3) Si a=b-c alors les solutions de $ax^2+bx+c=0$ sont -1 et $\frac{-c}{a}$

Exercice N°2: (3,5 points)

1) Résoudre dans IR les équations suivantes :

$$a) -7x^2 + 5x - 2 = 0$$

$$b)\frac{9}{4}x^2-3x+1=0$$

a)
$$-7x^2 + 5x - 2 = 0$$
 ; b) $\frac{9}{4}x^2 - 3x + 1 = 0$; c) $(2\sqrt{t} + 1)^2 - (2\sqrt{t} + 1) - 20 = 0$;

2) a – Soit a et b deux réels. Quelle est la bonne réponse :

|a|+|b|=0 signifie: a=-b ou bien a=0 et b=0 ou bien a=0 ou b=0

b - Résoudre dans IR l'équation : $\left|x^2 - 9\right| + \left|-x^2 - 2x + 3\right| = 0$

Exercice N°3: (4 points)

- 1) Soit les intervalles $I = \left] -\infty, \frac{5}{2} \right]$; $J = \left[\frac{5}{3}, +\infty \right]$ et $K = \left[-3, 2 \right]$. Déterminer $I \cap J$; $I \cap K$; $I \cup J$ et $I \cup K$
- 2) Résoudre dans IR les équations suivantes :
 - $\bullet \quad \sqrt{5-2x} = 3x-5$
 - $\bullet \quad \frac{2}{\sqrt{2-x}} = \sqrt{x+3}$

Exercice N°4: (1,5 points)

Soit l'équation (E): $x^2 + (4 + \sqrt{5})x + 4\sqrt{5} = 0$

- 1) Montrer que l'équation (E) admet deux racines distinctes x_1 et x_2
- 2) Vérifier que $x_1 = -4$ est une solution de (E)
- 3) Trouver alors l'autre solution x_2 .

Exercice N°5: (6,5 points)

Le plan est muni d'un repère orthonormé (O, i, j). Soient les points A(1,1); B(-4,1) et C(4,5).

- 1) a Déterminer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
 - b Les points A, B et C sont ils alignés ? Justifier.
 - c Montrer que ABC est un triangle isocèle en A.
- 2) Soit *E* le point du plan vérifiant : $\overrightarrow{AC} = \overrightarrow{BE} + \frac{1}{2}\overrightarrow{BC}$

Montrer que les coordonnées du point E est (-5,3)

3) a – Montrer que $(\overrightarrow{BE}, \overrightarrow{BC})$ est une base orthogonale.

b – Déterminer les coordonnées des points E, C et A dans le repère $(B, \overrightarrow{BE}, \overrightarrow{BC})$.