Devoir de Maison N°3

Lycée secondaire Teboulba

Exercice \mathcal{N} °1:

Soit
$$f(x) = Sin^2 x - 2Sinx \cdot Cosx + \frac{3}{2}$$
 avec $x \in [0, \pi]$.

1-/ Calculer
$$f(\frac{\pi}{2})$$
; $f(\frac{2\pi}{3})$ et $f(\frac{3\pi}{4})$.

2-/ a) Calculer les réels A, B et C définis par :

$$A = Sin^{2} \frac{\pi}{12} + Sin^{2} \frac{5\pi}{12} \quad ; \quad B = Sin^{2} \frac{\pi}{12} + Sin^{2} \frac{7\pi}{12} \quad \text{et} \quad C = Sin \frac{\pi}{12} \quad Cos \frac{\pi}{12} + Sin \frac{7\pi}{12} \quad Cos \frac{7\pi}{12}$$
b) Vérifier alors $f(\frac{\pi}{12}) + f(\frac{7\pi}{12}) = 4$.

- 3-/ a) Montrer que pour tout $x \in]0,\pi[$, $f(x) = Sin^2x$ ($\frac{3}{2}Cotg^2x 2Cotgx + \frac{5}{2}$).
 - b) Résoudre dans $]0,\pi[: \frac{3}{2}Cotg^2x 2Cotgx + \frac{5}{2} = 0.$
 - c) Quel est alors le signe de f(x).

Exercice $\mathcal{N}^{\circ}2$:

Soit $\mathbf{R}(O, \overset{ ightarrow}{i}, \overset{ ightarrow}{j})$ un repère orthonormé du plan .

1-/ Soient les points $A(0,\sqrt{2})$ et $B(2,-\sqrt{2})$.

Donner une équation cartésienne de la droite (AB).

2-/ Soit
$$\mathscr{C} = \{ M(x, y) \in P / x^2 + y^2 - 2x + 6y + 7 = 0 \}.$$

- a) Montre que \mathscr{C} est le cercle de centre I(1,-3) et de rayon $\sqrt{3}$.
- b) Vérifier que (AB) est tangente à ${\mathscr C}$.
- c) Déterminer les coordonnées des points d'intersections de \mathscr{C} et de l'axe (O,\vec{j}) .
- 3-/ Soit le cercle \mathscr{C} d'équation : $x^2 + y^2 + 2y 2 = 0$.
 - a) Donner le centre J et le rayon R de \mathscr{C}' .
 - b) Vérifier que le point $K(\sqrt{3}Sin\alpha, \sqrt{3}Cos\alpha 1)$ avec $\alpha \in [0, \pi]$ appartient à \mathscr{C}' .
 - c) Montrer que l'ensemble Δ des points M(x, y) du plan tels que $MI^2 MJ^2 = 9$ est une droite. Vérifier que $\Delta \perp (IJ)$.

4-/ Soit \mathcal{C}_m 'l'ensemble des points M(x,y) du plan tels que : $x^2 + y^2 - mx + 2(m+1)y + \frac{m^2}{4} + 4m - 2 = 0$ où m est un paramètre réel.

- a) Montrer que \mathcal{C}_m est un cercle dont on donnera les coordonnées du centre I_m et de rayon R_m en fonction de m.
- b) Montrer que I_m varie sur la droite D: 2x + y + 1 = 0.
- c) Vérifier que $I \in D$ et $J \in D$

Exercice $N^{\circ}3$:

On considère les fonctions f et g définie par : $f(x) = \frac{2}{x-1}$ et $g(x) = \sqrt{x-2}$

 ζ_f et ζ_g sont les représentations graphiques de f et g dans un repère $O.N(O, \overrightarrow{i}, \overrightarrow{j})$.

- 1-/ a) Donner le tableau de variation de f sur IR\{1} et préciser ses limites.
 - b) Construire ζ_f en précisant ses asymptotes.

2-/ Soit la fonction F définie par : $F(x) = \frac{2}{|x|-1}$.

On désigne par ζ_F la représentation graphique de F dans le même repère O.N.

- a) Prouver qu'on peut construire la courbe ζ_F à partir de ζ_f . Tracer alors ζ_F .
- b) En déduire le tableau de variation de F.

3-/ a) Donner le tableau de variation de g et tracer ζ_g .

b) Soit la fonction G définie par : $G(x) = \sqrt{|x|-2}$. Déduire la construction de la courbe ζ_G à partir de ζ_g .

4-/ a) Prouver que les courbes ζ_f et ζ_g se coupent en un seul point A(3,1).

b) Résoudre graphiquement l'équation : $\frac{2}{|x|-1} = \sqrt{|x|-2}$. Justifier