Exercice1:

plan est muni d'un repère orthonormé $(0, \vec{i}, \vec{j})$.

1) On considère la fonction f définie sur IR par f (x) = $\frac{3}{x-1}$

On désigne par (ζ_f) sa courbe représentative dans le repère $(0, \vec{i}, \vec{j})$

- a)Déterminer D_f l'ensemble de définition de f
- b)Etudier le sens de variation de f sur chacun des intervalles où elle est définie.
- c)Tracer (ζ_f)
- 2)Soit la fonction g : $IR \rightarrow IR$

$$x \mapsto \frac{1}{4}x^2 - 3$$

- a) Tracer dans le même repère $(0, \vec{i}, \vec{j})$ la courbe (ζ_g) de la fonction g.
- b) Déterminer les coordonnées des points d'intersection de (ζ_f) et (ζ_g) (par calcul)
- c) Résoudre dans IR graphiquement l'inéquation $\frac{-x^3+x^2+12x}{4(x-1)} \le 0$
- 3) Soit la fonction $h : IR \rightarrow IR$

$$x \mapsto \left| \frac{1}{4} x^2 - 3 \right|$$

- a) Construire (ζ_h) de la fonction h tout on utilisant la courbe (ζ_g)
- b) Déterminer graphiquement le nombre de solution de l'équation h (x) = 3

Exercice:2

Un relevé des durées des communications téléphoniques effectués dans un central téléphonique a fourni les informations consignées dans le tableau suivant (l'unité de durée est la minute)

Intervalle de durée	[0;2[[2;4[[4;6[[6;8[[8;10[[10;12[
Effectifs	14	16	25	15	17	13

- 1) Calculer la durée moyenne d'un appel, le mode.
- 2) Tracer le polygone des effectifs cumules croissants .
- 3) Déterminer graphiquement des valeurs approchées de médiane Me, Q1 et Q3
- 4) On suppose que les valeurs sont uniformément réparties sur chaque classe . Au moyen d'interpolation linéaire , donner les valeurs de M_e , Q_1 et Q_3
- 5) Déterminer la variance et l'écart type puis interpréter le résultats

Exercice 3

On considère un tétraèdre régulier ABCD d'arête 2 .

- 1- Soit le point I milieu du segment [CD] . Montrer que (AIB) est le plan médiateur [CD].
- 2- Soit A' le pied de la hauteur du triangle AIB issue du sommet A

Montrer que la droite (AA') est perpendiculaire au plan (BCD).

Quel est alors l'axe du cercle circonscrit au triangle BCD?

- 3- Calculer la distance AA'.
- 4- Soit le point K milieu du segment [AA'], calculer les distances BK et KI; en déduire que le triangle BKI est rectangle.
- 5- Soient les points E et F milieux respectifs des segments [BC] et [BD].

Montrer que la droite (EF) est l'axe du cercle circonscrit au triangle BKI.

Exercice:4

Soit $(0, \vec{i}, \vec{j})$ un repère orthonormé du plan A (2, -1) et la droite Δ : x + y + 1 = 0

- 1) a) Ecrire une équation cartésienne de la droite Δ ' perpendiculaire à Δ et passant par A
 - b) Déterminer les coordonnés du point B intersection de Δ et Δ '
- 2) Soit l'ensemble $\zeta = \{M(x, y) \in P \text{ tels que} : x^2 + y^2 6x + 1 = 0\}$
 - a) Montrer que ζ est un cercle de centre I (3 , 0) et de rayon R = $2\sqrt{2}$
 - b) Montrer que Δ est tangente à ζ
- 3) soit le point E(3, -4).

Montrer que E est à l'extérieur de ζ puis écrire les équations des tangentes à ζ passant

4) Soit F(1, 2)

Ecrire une équation de la droite D médiatrice de [AF]