Lycée Kerker (Mahdia)	&	Lycée Lamta (Monastir)	
Profs :Ben Amor+Ben Salem+Merkhi	Devoir de contrôle n°1	Classes: $2^{\text{ème}} S_1$ et $2^{\text{ème}} S_2$	
Date: 24/10/2009	Mathématiques	Durée :1 heure	

EXERCICE Nº1: (2 points)

1) Choisir l'affirmation juste :

2)

	A	В	С
$\chi^2 < 3$	0 < x < 3	$x \in]-3,3[$	$x \in]-\sqrt{3},\sqrt{3}[$
$(1-\sqrt{3})x=0$	$1 - \sqrt{3} = 0$	$x = 1 - \sqrt{3}$	x = 0

- 3) L'écriture scientifique de $a = 312,13 \times 10^7$ est :
 - a) $a = 3{,}1213 \times 10^9$, b) $a = 3{,}1213 \times 10^5$; c) $a = 0{,}31213 \times 10^{10}$
- 4) L'arrondi au centième de b = 1,737 est :
 - a) 1,73 ; b) 1,7 ; c) 1,74

EXERCICE N°2: (2 points)

- 1) Calculer $(\sqrt{6} + \sqrt{2})^2$ et $(\sqrt{3} 2)^2$
- 2) Déduire que $\sqrt{\frac{8+4\sqrt{3}}{7-4\sqrt{3}}} = 5\sqrt{2} + 3\sqrt{6}$

EXERCICE $N^{\bullet}3$: (3 points)

Résoudre dans R;

a)
$$|2x+3| = 2x+3$$

$$b) \quad \sqrt{1-4x} = x - 2$$

c)
$$\sqrt{x^2 + 3} = x + \sqrt{3}$$

EXERCICE N°4: (4 points)

Soit $n \in \mathbb{N}^*$, on pose $A(n) = 1 - \frac{1}{n^2}$.

- 1) Montrer que $A(n) = \frac{n-1}{n} \times \frac{n+1}{n}$
- 2) Calculer **alors** $B = (1 \frac{1}{2^2}) \times (1 \frac{1}{3^2}) \times ... \times (1 \frac{1}{9^2}) \times (1 \frac{1}{10^2})$
- 3) Soit $P_n = (1 \frac{1}{2^2}) \times (1 \frac{1}{3^2}) \times ... \times (1 \frac{1}{(n-1)^2}) \times (1 \frac{1}{n^2})$ pour $n \ge 2$.
 - a) Montrer que $P_n = \frac{n+1}{2n}$
 - b) Pour quelles **valeurs** de n, a-t-on $P_n > \frac{4}{7}$

EXERCICE N°5: (3 points)

On donne les vecteurs $\vec{U} \begin{pmatrix} m \\ \frac{1}{2} \end{pmatrix}$ et $\vec{V} \begin{pmatrix} -2 \\ m+2 \end{pmatrix}$ dans une base (\vec{i}, \vec{j}) de l'ensemble des vecteurs

du plan.

Déterminer m pour que :

- a) \vec{U} et \vec{V} soient colinéaires.
- b) $\vec{U} \perp \vec{V}$
- c) $\|\vec{U}\| = \|\vec{V}\|$

EXERCICE Nº6: (6 points)

Le plan est rapporté à un repère orthonormé (O, \dot{i}, \dot{j}) , on considère les points A(1,0), B(3,1) et C(2,-2).

- 1) a) Montrer que $(\overrightarrow{AB}, \overrightarrow{AC})$ est une base de l'ensemble des vecteurs du plan.
 - b) Montrer que (AB) et (AC) sont perpendiculaires.
- c) Déterminer les coordonnées du point D pour que ABCD soit un parallélogramme.
- 2) Soit E(x,2), déterminer x pour que les points A, B et E soient alignés.
- 3) Soit F le point défini par $\overrightarrow{AF} 3\overrightarrow{DF} + \overrightarrow{CF} = \overrightarrow{O}$. Déterminer les coordonnées du point F dans le repère $(A, \overrightarrow{AC}, \overrightarrow{AD})$.

Bon travail