Lycée Nafta

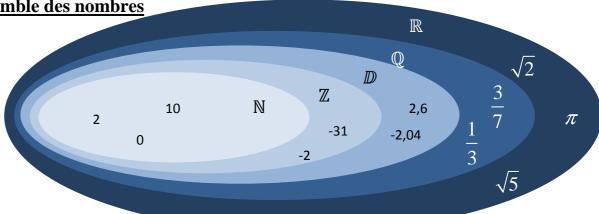
Prof: GUESMIA AZIZA

Chapitre. 1. CALCUL DANS IR

Classe: 2ème Année Sciences

Date: Sep 2016

I) Les ensemble des nombres



IN désigne l'ensemble des entiers naturels.

Z désigne l'ensemble des entiers relatifs.

ID désigne l'ensemble des décimaux.

Q désigne l'ensemble des nombres rationnels.

IR désigne l'ensemble des nombres réels.

Exercice:

I) Ecrire si c'est possible les réels ci-dessous sous la forme : $a.10^n$ (avec $a \in \mathbb{Z}$ et $n \in \mathbb{Z}$).

13 ;
$$-30,0363636$$
 ; $\frac{18}{32}$; $\sqrt{625}$; $\frac{3,195}{35,5} \times 100$; $\frac{-893}{95}$ et $\frac{18}{13}$

2) Déterminer les ensembles suivants : $IN \cap Q$; $IN \cup IR$; $Q \cap Z_+$; $IR \cap ID_-$; $ID \cup Z_-$; $Z \cup Q_-$;

 $IR \cap ID$; $Z_{+} \cap IR_{-}$

II) <u>Calculs sur les quotients</u>

Soient x, y, z et t des réels non nuls :
$$\frac{x}{y} + \frac{z}{t} = \frac{xt + yz}{yt}$$
 ; $\frac{x}{y} \times \frac{z}{t} = \frac{xz}{yt}$; $\frac{\frac{x}{y}}{\frac{z}{t}} = \frac{xt}{yz}$

Exercice:

1) Pour tout
$$x \in \mathbb{R} \{-1, 0\}$$
, vérifier que $\frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1}$

2) Calculer donc les sommes
$$S_1$$
 et S_2 avec $S_1 = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \frac{1}{4 \times 5} + \frac{1}{5 \times 6}$ et $S_2 = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \cdots + \frac{1}{n(n+1)}$ $(n \in IN^*).$

III) Règles de calcul sur les puissances

Retenir

Par convention
$$x^0 = 1$$
 pour tout réel x non nul $x^1 = x$;
Et pour tout entier n ; m et p : $x^n ext{.} x^p = x^{n+P}$; $\frac{x^n}{x^p} = x^{n-p}$ avec $x \neq 0$; $(x^n)^p = x^{np}$ $(xy)^n = x^n y^n$ $\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$ avec $y \neq 0$

Exercice nº1:

Calculer A et B avec
$$A = \frac{6^{-3} + 6^{-3} + 6^{-3} + 6^{-3}}{3^{-3} + 3^{-3} + 3^{-3} + 3^{-3}}$$
; et $B = \frac{12^5 - 6^{10}}{6^4 (2^5 - 6^5)}$

Exercice n°2:

Soit a un réel différent de 1.

- 1) Développer $(1-a)(1+a+a^2+a^3+a^4+a^5)$.
- 2) En déduire la valeur du réel $(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32})$.

IV) Les identités remarquables

Activité compléter

Retenir

Soit a, b et c trois réels, on a les identités remarquables suivantes :
$$(a + b)^2 = a^2 + 2ab + b^2$$
; $(a - b)^2 = a^2 - 2ab + b^2$; $a^2 - b^2 = (a - b)(a + b)$. $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc$. $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$; $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$. $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$; $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$. $(a + b + c)^3 = a^3 + b^3 + c^3 + 3(a^2b + a^2c + b^2c + ab^2 + ac^2 + bc^2) + 6abc$.

Exercice n°1

- On considère les deux réels : $A = 17^6 1$ et $B = 17^6 + 17^4 2$.
 - a) Factoriser A puis en déduire une factorisation de B.
 - b) Montrer alors que A et B sont divisibles par 144.
- 2) Soit *a* un réel.
 - a) Développer $\left[a + \frac{1}{2}\right]^2 + \frac{3}{4}$.
 - b) En déduire que (a^3-1) et(a-1) sont de même signe.
 - c) Les réels (a^2 -1) et(a-1) sont-ils de même signe?

Exercice n•2 Factorisation

Factoriser les expressions suivantes : $F = (2a + 3b)^3 - (2a - 3b)^3$; $G = a^2b^2 - a^2 - b^2 + 1$.

V) <u>Comparaison de réels - Encadrement</u>

1) Ordre et comparaison

Pour tout réel a, b, c et d on a: a < b alors a + c < b + cet a - c < b - c

a < b (si c > 0 alors a.c < b.c) et (si c < 0 alors a.c > b.c).

a < b et c < d alors a + c < b + d.

Si a, b, c et d sont des réels positifs et tel qu'on a a < b et c < d alors a. c < b.d.

a < b équivaut à (b - a) est strictement positif (0 < b - a).

a > b équivaut à (b - a) est strictement négatif (0 > b - a).

Si
$$0 < a < b$$
 alors $\frac{1}{a} > \frac{1}{b}$.

Si
$$a < b < 0$$
 alors $\frac{1}{a} > \frac{1}{b}$.

2) Comparaison de a; $a^2\sqrt{a}$

Soit a un réel

Si $a \ge 1$ alors on $a : a^2 \ge a$; $a \ge \sqrt{a}$.

Si $0 \le a \le 1$ alors on $a: a^2 \le a$; $a \le \sqrt{a}$.

Si $a \le -1$ alors on $a : a^2 \ge a$.

Si $-1 \le a \le 0$ alors on $a: a^2 \le a$.

3) Comparaison de a et $\frac{1}{a}$

Soita un réel non nul

Si $a \ge 1$; alors on a: $a \ge \frac{1}{a}$; Si $a \le -1$; alors on a: $a \le \frac{1}{a}$

Si $0 < a \le 1$; alors on a: $a \le \frac{1}{a}$; Si $-1 \le a < 0$; alors on a: $a \ge \frac{1}{a}$

4) Encadrement, intervalles de IR

Soient a; b; et x trois réels

Sia < x < b alors on dit quex appartient à l'intervalle ouvert] $a; b [x \in]a; b [$.

 $Sia \le x \le b$ alors on dit quex appartient à l'intervalle fermé [a;b] $x \in [a;b]$.

Six > a alors on dit quex appartient à l'intervalle $a : +\infty$.

 $Six \le a$ alors on dit que x appartient à l'intervalle $]-\infty$; a].

L'ensemble des réels positifs est l'intervalle $[0; +\infty[$ on le note IR $_+$

L'ensemble des réels strictement positifs est l'intervalle] 0; $+\infty$ [on le note IR_+^* .

Exercice nº1

- 1) Soit a un réel tel que $-2 \le a \le 3$ déterminer :
 - a) un encadrement de (-3a + 5)
- b) un encadrement de $\frac{2a+3}{-a+5}$
- Soient a et b deux réels de IR_+^* , montrer les deux inégalités : $\frac{1}{a+b} < \frac{1}{a} + \frac{1}{b}$; $\sqrt{a+b} < \sqrt{a} + \sqrt{b}$

Exercice n°2

Soient $A = (1+x)^2$ et B = 1 + 2x.

- 1. Comparer A et B.
- 2. Lequel est plus grand : $a = (1,00000000000000)^2$ ou b = 1,000000000000000.

Exercice nº 3

- 1. Soit x un réel comparer $\sqrt{\frac{1}{1+x^2}}$ et $\frac{1}{1+x^2}$
- **2.** Soit x un réel un réel strictement positif montrer l'inégalité suivante $x + \frac{1}{x} \ge 2$.

VI) Les radicaux

Soit a un réel positif ou nul, on appelle racine carrée de a le seul nombre positif dont le carré est égal à a. La racine carrée de a est notée \sqrt{a} . On donne $\sqrt{0} = 0$. Si a est positif alors on a $\sqrt{a^2} = a$. Si a est négatif alors on a $\sqrt{a^2} = |a|$. Soit x et y deux réels strictement positifs $\sqrt{x} \times \sqrt{y} = \sqrt{x \times y}$ et $\frac{\sqrt{x}}{\sqrt{y}} = \sqrt{\frac{x}{y}}$.

Remarque: $(\sqrt{x} - \sqrt{y})$ s'appelle <u>l'expression conjuguée</u> de $(\sqrt{x} + \sqrt{y})$.

Exercice nº1:

- 1) Déterminer le réel a dans l'expression suivante : $\sqrt{7 + \sqrt{a}} = 3$.
- Ecrire le nombre suivant sans radicaux au dénominateur : $A = \frac{1}{\sqrt{3} + \sqrt{2}} + \frac{1}{\sqrt{3} \sqrt{2}}$

Exercice n°2

Soient $M = \sqrt{9 - 4\sqrt{5}} + \sqrt{9 + 4\sqrt{5}}$ et $N = \sqrt{7 - 4\sqrt{3}} + \sqrt{7 + 4\sqrt{3}}$.

- 1) Calculer M^2 et N^2 . En déduire une écriture plus simple de chacun des réels M et N.
- 2) Soit $a = \frac{\sqrt{5}-1}{2}$. Vérifier que $a^2 + a 1 = 0$ et que $\frac{1}{a} = a + 1$.
- 3) Montrer alors que $\frac{\sqrt{a}}{\sqrt{a+1}} + \frac{\sqrt{a+1}}{\sqrt{a}} = \sqrt{5}$.

VII) Valeur absolue

Pour tout nombre réel x, la valeur absolue de x (notée |x|) est définie par:

$$|x| = x$$
, si $x > 0$; $|x| = -x$, si $x < 0$; $|x| = 0$, si $x = 0$.

Pour tout nombre réel x et pour tout nombre réel y on a:

$$|x|.|y|=|x.y|$$
; pour $y \neq 0$ $\frac{|x|}{|y|}=\left|\frac{x}{y}\right|$; $|x+y| \leq |x|+|y|$; $|x-y| \geq \left||x|-|y|\right|$.

 $|x| \le a$ signifie $-a \le x \le a$; $|x| \ge a$ signifie ($x \le -a$ ou $x \ge a$) où a est strictement positif.

Exercice n° 1

Déterminer x dans chacun des cas suivants : |2x - 3| = 0; $|3x + \sqrt{2}| = |x - 0.5|$; |1 - x||1 + x| = 9.

Exercice nº 2

Soit O et I points d'une droite D. Sur D on considère les points A, B, et M d'abscisses respectives 2; -3 et x dans le repère (O, I).

- Déterminer l'ensemble des points M de la droite D tel que : |x-2|+|x+3|=5.
- 2) Existe-t-il des points du segment [AB] vérifiant |x-2|+|x+3|=6?
- 3)

VIII)Proportionnalité et pourcentage

Proportionnalité

Définition

Une proportion est une égalité de deux rapports. Soient a, b, c et d des réels non nuls.

* a et c sont respectivement proportionnels à b et d si et seulement si

L'égalité $\frac{a}{h} = \frac{c}{d}$ s'appelle une **proportion.**

- * Si $\frac{a}{b} = \frac{c}{d}$ alors $\frac{a+c}{b+d} = \frac{a}{bd}$ (avec $b+d \neq 0$). * Si $\frac{x}{a} = \frac{y}{b} = \frac{z}{c} = k$ alors $\frac{x+y+z}{a+b+c} = k$ (avec $a+b+c \neq 0$). * $\frac{a}{b} = \frac{c}{d}$ équivaut à ad = bc.

Pourcentage 1-

Situation	Application linéaire associée à x	Exemple - clé
Prendre t % d'une quantité x	$x \to \frac{t}{100} x$	12 % de x c'est $0,12 \times x$
Augmenter une quantité x de t %	$x \to \left(1 + \frac{t}{100}\right) x$	Si x augmente de 12%, alors x devient $1,12 \times x$
Diminuer une quantité x de t %	$x \to \left(1 - \frac{t}{100}\right) x$	Si x diminue de 12%, alors x devient $0.88 \times x$

Exercice

- Le prix d'un C.D baisse de 8 % la première année, puis de 6% la seconde. De quel pourcentage aura baissé le prix de ce C.D en deux ans?
- 2) Un objet coûte 120 D.T.déterminer son prix final après une baisse de 10 % puis une hausse de 8 %.

Ordre de grandeur - Valeurs approchées IX)

1-Valeurs approchées

Exemple: A l'aide d'une calculatrice on a $\sqrt{7} = 2,645751311.....2,645 \le \sqrt{7} \le 2,646$

$$\sqrt{7}$$
 - 2,645 = 0,000751311......et $\sqrt{7}$ - 2,646 = -0,000248688.....

On dit alors que 2,645 est une valeur approchée de $\sqrt{7}$ à 10^{-3} près car $\left|\sqrt{7}-2,645\right|<10^{-3}$.

$$\sqrt{7} \ge 2,645$$
 donc 2,645 est une valeur approchée par défaut de $\sqrt{7}$ à 10^{-3} .

$$\sqrt{7} \le 2,646$$
 donc 2,646 est une valeur approchée par excès de $\sqrt{7}$ à 10^{-3} .

Définition:

Soit n un entier. On dit que le nombre décimal a est une valeur approchée à 10^n près du réel b si $|b-a| \le 10^n$.

Si a < b, on dit que a est une valeur approchée de b à 10^n près par défaut.

Si a > b, on dit que a est une valeur approchée de b à 10^n près par excès.

Remarque

Lorsque $m \times 10^{-p} \le a \le (m+1) \times 10^{-p}$ on dit que $m \times 10^{-p}$ est l'approximation décimale de a par défaut à 10^{-p} près et $(m+1) \times 10^{-p}$ est l'approximation décimale de a par excès à 10^{-p} près.

2- Arrondi

Arrondir, par exemple, un nombre à 10^{-1} près c'est prendre la valeur approchée de ce nombre à 10^{-1} près :

- * Par défaut : si le chiffre des centaines est 0, 1; 2; 3; ou 4.
- * Par excès : si le chiffre des centaines est 5, 6; 7; 8; 9.

3- Ecriture scientifique

Exemples

Réel	3,245	-773,24	0,00251	954000
Ecriture scientifique	3,245	$-7,7324 \times 10^2$	$2,51 \times 10^{-3}$	$9,54 \times 10^5$

La notation scientifique d'un décimal est de la forme

d \times 10ⁿ Pentier relatif $(n \in \mathbb{Z})$ Décimal ayant un seul chiffre non nul ayant la virgule

4- Ordre de grandeur d'un nombre

Exemple

x = 2867,5; l'ordre de grandeur de x est 3×10^3 (car sa notation scientifique est 2,8675 $\times 10^3$).

Définition:

Si $d \times 10^n (n \in \mathbb{Z})$ est l'écriture scientifique d'un nombre (d : décimal ayant un seul chiffre non nul avant la virgule), **l'ordre de grandeur** de ce nombre est $a \times 10^n$ où a est **l'arrondi** de d à l'unité.