> COURS FONCTIONS 2SC Mr Y.BOULILA

Le plan est muni d'un repère orthonormé (O, \vec{i}, \vec{j}) (unité: 1 cm, sauf précision contraire)

I) Introduction:

1) Exercice: 1) Compléter le tableau de valeurs:

X	- 2	- 1	0	1	2
-2x + 1					
$x^5 - 5x^3 + 2x + 1$					

2)a) Construire dans le même repère (O, \vec{i}, \vec{j}) les graphes des fonctions:

$$f(x) = -2x + 1$$
 et $g(x) = x^5 - 5x^3 + 2x + 1$

b) Calculer f(3) et g(3), conclusion?

2) Conclusion: En Mathématiques, pour construire correctement le graphe d'une fonction,

II) Sens de variation d'une fonction sur un intervalle I, où elle est définie :

1) Exercice: Soient les fonctions: $f(x) = \frac{x-3}{x-2}$ et $g(x) = \frac{x+3}{x-2}$

- 1)a) Déterminer les deux intervalles I et I', sur lesquels f est définie (de même pour g)
 - b)i) Démontrer que pour tous réels: a et b de I

Alors
$$f(a) < f(b)$$
 et $g(a) > g(b)$

- ii) Que peut-on démontrer si a et b sont deux réels de I' tels que: a < b ?
- iii) Dresser le tableau de variation de f et g sur \mathbf{R}

Vocabulaire: «La fonction f est

c)i) Démontrer que pour tous réels: a et b de I (a ≠ b)

$$\frac{f(b) - f(a)}{b - a} = \frac{f(a) - f(b)}{a - b} > 0$$

$$\frac{g(b)-g(a)}{b-a} = \frac{g(a)-g(b)}{a-b} < 0$$

- ii) Que peut-on démontrer si a et b sont deux réels de I'?
- iii) Interpréter graphiquement le 1)c)i) . Remarque ?
- 2) Taux d'accroissement d'une fonction. Dans toute la suite on supposera que: $a \neq b$
 - <u>a) Définition</u>: I est un intervalle sur lequel la fonction f est définie ($I \subset D_f$) Pour tous réels a et b de I,

on appelle taux d'accroissement de f entre a et b , le réel noté: $\tau_{(a,b)}$ défini par:

$$\tau_{(a,b)} = \frac{f(b) - f(a)}{b - a}$$

b) Interprétation géométrique: Soit f une fonction définie sur I

Les points A(a; f(a)) et B(b; f(b)) sont des points
$$\tau_{(a,b)} = \frac{f(b) - f(a)}{b - a} \text{ est}$$

c) Propriétés: i) Si f est croissante sur I

Alors: pour tous réels a et b de I : *) si a < b alors:

*) si a > balors:

Alors: pour tous réels a et b de I : $\frac{f(b) - f(a)}{b - a}$

<u>ii)</u> Si pour tous réels a et b de I : $\frac{f(b) - f(a)}{b-a}$

Alors: pour tous réels a et b de I : *) si a < b alors *) si a > balors

Alors:

On retiendra: f est une fonction définie sur un intervalle I de R

> \Leftrightarrow Pour tous réels a et b de I : $\tau_{(a,b)} = \frac{f(b) - f(a)}{b-a}$ f est croissante sur I

> \Leftrightarrow Pour tous réels a et b de I : $\tau_{(a,b)} = \frac{f(b) - f(a)}{b - a}$ f est décroissante sur I

d) Exercice: $m \neq 0$; p; $k \neq 0$; $\alpha \neq 0$; β ; γ , sont des paramètres réels

- 1)a) Déterminer D_f, le domaine de définition de f
 - b) (a et b appartenant à un même intervalle inclus dans D_f) Déterminer l'expression en fonction de a et b, du taux d'accroissement de f entre a et b
- 2) Déduire de 1) le tableau de variation des fonctions:

$$i) f(x) = 2x + p$$

ii)
$$f(x) = -3x + p$$

iii)
$$f(x) = mx + p$$

iv)
$$f(x) = 3x^2$$

v)
$$f(x) = -2x^2$$
 vi) $f(x) = kx^2$

vi)
$$f(x) = kx^2$$

vii)
$$f(x) = \frac{k}{x}$$

viii)
$$f(x) = \frac{k}{x - k}$$

vii)
$$f(x) = \frac{k}{x}$$
 viii) $f(x) = \frac{k}{x-3}$ ix) $f(x) = \frac{k}{mx+p}$

$$f(x) = x^2 + 2x - 3$$

xi)
$$f(x) = -3x^2 + 4x - 5$$

x)
$$f(x) = x^2 + 2x - 3$$
 xi) $f(x) = -3x^2 + 4x - 5$ xii) $f(x) = \alpha x^2 + \beta x + \gamma$

e) Notion de: « nombre dérivé » d'une fonction f en a (a est un réel de I)

1) Exemple: $f(x) = x^2$

i) On fixe
$$a = 1$$
, $\tau_{(1,b)} = = = =$

$$\tau_{(1,b)} \text{ est le} \qquad \qquad \text{de la droite (AB) avec A(;) et B(;)}$$

Par exemple avec: b = 2; b = 1.5; b = 0; b = 0.5

- ii) On donne à b des valeurs « de plus en plus proches » de a=1 Les droites (AB) tendent vers la $\tau_{(1,b)}$ prend alors des valeurs « de plus en plus proches de » qui est le coefficient directeur de
- iii) Vocabulaire: 2 est appelé

2) Exemple: $f(x) = x^5 - 5x^3 + 2x + 1$

a)i) On fixe
$$a=0$$
 , $\tau_{(0,b)}=$ = = =
 $\tau_{(0,b)}$ est le de la droite (AB) , avec A(;) et B(;)

Par exemple avec: b = 1; b = 0.5

- ii) On donne à b des valeurs « de plus en plus proches » de a=0Les droites (AB) tendent vers la $\tau_{(0,b)}$ prend alors des valeurs de plus en plus proches de , qui est le coefficient directeur de
 Vérification avec une calculatrice graphique
- iii) Vocabulaire: 2 est appelé

b)i) On fixe
$$a=1$$
, $\tau_{(1,b)}=\tau_{(1,b)}$ est le de la droite (AB), avec A(;) et B(;)

Par exemple avec: b = 0; b = 2

- ii) On donne à b des valeurs « de plus en plus proches » de a=1 Les droites (AB) tendent vers la $\tau_{(1,b)}$ prend alors des valeurs de plus en plus proches de , qui est le coefficient directeur de Vérification avec une calculatrice graphique
- verification avec une calculative grapinqu
- iii) <u>Vocabulaire:</u> 8 est appelé

III) Autres exemples de fonctions :

A) Fonctions du type:
$$f(x) = \sqrt{\alpha x + \beta} (\alpha; \beta) \in \mathbb{R}^* \times \mathbb{R}$$
:

1) Tableau de variation de
$$f(x) = \sqrt{\alpha x + \beta}$$
 $(\alpha; \beta) \in \mathbb{R}^* \times \mathbb{R}$:

a) Exemples: 1)
$$f(x) = \sqrt{2x-7}$$

a) Pour quelles valeurs de x peut-on calculer f(x)?

On dit que f'est définie pour tous les réels On dit que le domaine de définition de f est: $D_f =$

b) Pour tous réels a et b de
$$D_f$$
: $\tau_{(a;b)}$ =

$$\tau_{(a;b)} =$$

c) Dresser le tableau de variation de f

2)
$$f(x) = \sqrt{-3x + 1}$$

Mêmes questions que ci-dessus

2) Cas général :
$$f(x) = \sqrt{\alpha x + \beta}$$

a) Domaine de définition :
$$f(x) = \sqrt{\alpha x + \beta}$$

b) Taux d'accroissement de f entre a et b :

Pour tous réels a et b de D_f : $\tau_{(a;b)}$ =

c) Tableau de variation :

On retiendra: 1^{er}cas: $f(x) = \sqrt{\alpha x + \beta}$ 2^{ième}cas: $f(x) = \sqrt{\alpha x + \beta}$

3) Graphe de $f(x) = \sqrt{\alpha x + \beta}$:

 $\underline{a)\; Exemples:}\;\; \text{D\'eterminer}\;\; D_f\;\; \text{, dresser le tableau de variation de }\; f\;\; \text{, dresser un tableau de valeurs,}$ puis construire le graphe de f

i)
$$f(x) = \sqrt{x}$$

ii)
$$f(x) = \sqrt{x-x}$$

iii)
$$f(x) = \sqrt{-x-x}$$

i)
$$f(x) = \sqrt{x}$$
 ii) $f(x) = \sqrt{x-3}$ iii) $f(x) = \sqrt{-x-1}$ iv) $f(x) = \sqrt{\frac{1}{2}x+3}$ v) $f(x) = \sqrt{-2x+5}$

$$v) f(x) = \sqrt{-2x+5}$$

b) Exercices: 1) On considère la fonction: $f(x) = \sqrt{9-2x}$

- a) Déterminer les points d'intersection du graphe de f et des axes de coordonnées
- b) Construire le graphe de f
- c) Résoudre algébriquement, puis vérifier graphiquement les équations: i) $f(x) = \sqrt{5}$ ii) f(x) = 2.5 iii) f(x) = -1 iv) f(x) = 2x - 3 v) f(x) = -x + 5

i)
$$f(x) = \sqrt{5}$$

ii)
$$f(x) = 2.5$$

iii)
$$f(x) = -1$$

iv)
$$f(x) = 2x - 3$$

$$y) f(x) = -x + 5$$

2)a) Résoudre algébriquement, puis vérifier avec une calculatrice graphique:

i)
$$\sqrt{x} \ge x$$

ii)
$$\sqrt{x-2} \le x-2$$

iii)
$$\sqrt{2x-5} < \sqrt{x-2}$$

i)
$$\sqrt{x} \ge x$$
 ii) $\sqrt{x-2} \le x-2$ iv) $\sqrt{7x+15} < \sqrt{-2x+3}$

b) Dresser le tableau de signes de: $\frac{1}{2\sqrt{x-2}} - \frac{1}{x-2}$

IV) Fonctions homographiques:

$$(c \neq 0 \text{ et ad - } bc \neq 0)$$
 $f(x) = \frac{ax + b}{cx + d}$

$$f(x) = \frac{ax + b}{cx + d}$$

1) Fonction $f(x) = \frac{K}{x}$, (k réel non nul fixé): $D_f =$

a) Pour tout x de
$$D_f$$
, $f(-x) =$

donc f est une fonction impaire donc le graphe de f est

On étudie le sens de variation de f sur

On en déduit par symétrie le sens de variation de f sur

b) Asymptotes:

i) *) Lorsque x tend vers: $+\infty$, f(x) tend vers:

- *) La droite d'équation
- (axe

) est une asymptote « horizontale » au graphe de f

<u>ii)</u> *) Lorsque x tend vers: 0^+ , f(x) tend vers:

- *) La droite d'équation
- (axe

) est une asymptote « verticale » au graphe de f

On retiendra:

1^{er}cas:

 $f(x) = \frac{k}{x}$

2^{ième}cas:

$$f(x) = \frac{k}{x}$$

Asymptotes:

c) Exemples: Construire (sans tableau de valeurs) le graphe de f

i) $f(x) = \frac{1}{2x}$

ii) $f(x) = -\frac{3}{2x}$

2) Cas général: $f(x) = \frac{ax + b}{cx + d}$ (a; b; c et d sont des réels tels que: $c \neq 0$ et ad - $bc \neq 0$):

a) Exemples : 1)
$$f(x) = \frac{2x-2}{x+3}$$

les graphes des fonctions: f; g sont notés: G_f ; G_g

- a) Déterminer Df
- b)i) Déterminer par « identification des polynômes » les réels β et k tels que:

Pour tout réel x de D_f :
$$\frac{2x-2}{x+3} = \beta + \frac{k}{x+3}$$

- ii) Même question en effectuant la division euclidienne de: 2x 2 par x + 3
- c) Soit $g(x) = -\frac{8}{x}$
- i) Démontrer que: M(x;y) appartient à $G_f \Leftrightarrow N(x+3;y-2)$ appartient à G_g
- ii)*) Montrer que M est l'image de N par une translation t_{ii}
 - **) Que peut-on en déduire pour Gf et Gg ?
- iii)*) Construire G_f
 - **) Donner les équations des asymptotes de G_f et les coordonnées du centre de symétrie de G_f
- 2) $f(x) = \frac{-6x + 27}{8x 20}$

les graphes des fonctions: f; g sont notés: G_f ; G_g

- a) Déterminer Df
- b) Déterminer par division euclidienne les réels β et k tels que:

Pour tout réel x de D_f :
$$\frac{-6x + 27}{8x - 20} = \beta + \frac{\dot{k}}{x - \frac{5}{2}}$$

- c) Soit $g(x) = \frac{3}{2x}$
 - i) Démontrer que: M(x;y) appartient à $G_f \Leftrightarrow N(x \frac{5}{2}; y + \frac{3}{4})$ appartient à G_g
 - ii)*) Montrer que M est l'image de N par une translation t_{ii}
 - **) Que peut-on en déduire pour Gf et Gg ?
- iii)*) Donner les coordonnées du centre de symétrie de G_f et les équations des asymptotes de G_f
 - **) Construire G_f

b) Cas général: $f(x) = \frac{ax + b}{cx + d}$ ($c \neq 0$ et ad - $bc \neq 0$):

- a) Déterminer Df

b) Exprimer en fonction de a ; b ; c et d , les réels
$$\beta$$
 et k tels que:
Pour tout réel x de D_f : $\frac{ax+b}{cx+d} = \beta + \frac{k}{x+\frac{d}{c}}$

- c) Soit $g(x) = \frac{bc ad}{c^2 x}$
 - i) Démontrer que: M(x;y) appartient à $G_f \Leftrightarrow N(x + \frac{d}{c}; y \frac{a}{c})$ appartient à G_g
 - ii)*) Montrer que M est l'image de N par une translation t_{ii}
 - **) Que peut-on en déduire pour G_f et G_g ?
 - iii) Donner les coordonnées du centre de symétrie et les équations des asymptotes de G_f
 - iv) Pour construire G_f dans le repère (O, \vec{i}, \vec{j}) , on construit G_g , dans le repère

$$(\Omega, \vec{i}, \vec{j})$$

On retiendra:

$$f(x) = \frac{ax + b}{cx + d} \qquad (c \neq 0 \text{ et ad - bc} \neq 0) \qquad D_f = 0$$

 G_f est l'hyperbole d'équation: $y = \frac{ax + b}{cx + d}$, dont les asymptotes sont les droites:

Le centre de symétrie de G_f est Ω (

- c) Remarque: On peut construire une hyperbole en utilisant la méthode décrite au IV)2)b) ou connaissant sa forme générale, utiliser quelques points bien choisis
- <u>d) Exemples:</u> Déterminer: D_f ; les asymptotes à G_f ; le centre de symétrie de G_f Puis construire G_f dans le repère (O, \vec{i}, \vec{j}) , en déduire le tableau de variation de f

i)
$$f(x) = \frac{-3x+10}{x-4}$$

ii)
$$f(x) = \frac{3x+4}{2x-3}$$

i)
$$f(x) = \frac{-3x+10}{x-4}$$
 ii) $f(x) = \frac{3x+4}{2x-3}$ iii) $f(x) = \frac{-2x+1}{3x+1}$ iv) $f(x) = \frac{4x-7}{2-3x}$

iv)
$$f(x) = \frac{4x - 7}{2 - 3x}$$

- e) Exercices: 1)a) $f(x) = \frac{2x-3}{x-1}$ Déterminer: D_f ; les asymptotes à G_f ; le centre de symétrie de G_f Puis construire G_f dans le repère (O, \vec{i}, \vec{j})
 - b) Résoudre graphiquement, puis algébriquement les inéquations:

$$i) \frac{2x-3}{x-1} \ge -x+3$$

$$ii) \frac{2x-3}{x-1} \ge x+1$$

i)
$$\frac{2x-3}{x-1} \ge -x+3$$
 ii) $\frac{2x-3}{x-1} \ge x+1$ iii) $\frac{2x-3}{x-1} \ge \frac{1}{4}x + \frac{3}{4}$

- 2)a) Déterminer des réels a ; b ; c et d tels que l'hyperbole H : $y = \frac{ax + b}{ax + d}$ admette pour asymptote la droite d'équation: y = 2et passe par les points: A(2;1) et B(0,5;-2)
 - b)i) Construire H dans le repère (O, i, i)
 - ii) Construire le graphe de la fonction $f(x) = \left| 2 \frac{2}{x} \right|$, dans le repère (O, \vec{i}, \vec{j})
 - c)i) Construire la parabole P : $y = -x^2 2x + 3$, dans le repère $(0, \vec{i}, \vec{j})$
 - ii) Résoudre graphiquement puis algébriquement:

*)
$$2 - \frac{2}{x} = -x^2 - 2x + 3$$

**)
$$2 - \frac{2}{x} \ge -x^2 - 2x + 3$$