2SC DEVOIR DE CONTROLEN 4 MATHEMATIQUES Mr Y.B oulila

EXI(6points): suites arithmétiques et géométriques.

I. Soit la suite arithmétique (U_n) de raison r=-2 et telle que $U_{10}=25$.

a. Calculer
$$U_{50}$$
 .

b. Calculer
$$S_{10} = U_1 + U_2 + ... + U_{10}$$
.

- 2. Soit la suite géométrique (V_n) de raison $q = \frac{1}{2}$ et telle que $V_8 = \frac{3}{8}$.
- a. Calculer V_{20} .

b. Calculer
$$S_9 = V_1 + V_2 + ... + V_9$$
.

EX2 (4points) Soit (U_n) telle que $U_0 = 0$ et pour tout entier naturel n, $U_{n+1} = \frac{-4}{4+U_n}$.

Soit (V_n) telle que , pour tout entier naturel n, $V_n = \frac{1}{2+U_n}$.

- I. Démontrer que la suite (V_n) est arithmétique de raison $\frac{1}{2}$.
- 2. Exprimer V_n en fonction de n et en déduire que pour tout entier naturel n, $U_n = \frac{2}{n+1} 2$

Dans cet exercice, on dispose de la donnée suivante : $tan(\frac{\pi}{12}) = 2 - \sqrt{3}$.

I. Soit
$$x \in]0; \frac{\pi}{2}[$$
. Démontrer que $tan(\frac{\pi}{2}-x) = \frac{1}{tanx}$.

2. En déduire que :

$$tan(\frac{5\pi}{12}) = 2 + \sqrt{3}.$$

EX4 (7points)

L'unité de longueur est le cm

Soit [IA] un segment de longueur 9 cm et B le point de [IA] tel que IB=3 On désigne par O le milieu de [AB] et par h l'homothétie de centre I qui transforme A en B.

I)Déterminer le rapport de h

2) soit (C) le cercle de centre O et passant par A. M un point de (C) n'appartenant pas à (AB) et N est le symétrique central de M par rapport à O. Les droites (IM) et (BN) se coupent en K.

Montrer que h(M)=K

3)Déterminer et construire l'ensemble ϕ des points K lorsque M varie.

4)Soit Φ' le cercle de centre B et de rayon 3.

Construire un segment [LH] tel que:

Н∈**ф**'

LEΦ

 \overrightarrow{IH} -3 \overrightarrow{IL} = $\overrightarrow{0}$