Prof: M.Mohamed Krir

 $2 sc_1$

Durée: 2 h

EXERCICE N°1 : (5 pts)

Le plan est muni d'un repère orthonormé (O , \vec{i} , \vec{j}). On donne les fonctions f et g définies par

$$f(x) = \frac{1}{x-2}$$
 et $g(x) = \frac{x-1}{x-2}$

- 1)a) Déterminer le sens de variation de f sur $]2, +\infty[$
- b) Tracer la courbe représentative C_f de la fonction f .
- 2)a) Montrer que pour tout réel $x \in IR \setminus \{2\}$ on a : $g(x) = 1 + \frac{1}{x-2}$
- b) Tracer la courbe C_g de la fonction g à partir de la courbe C_f .
- 3) La droite Δ : y = x 1 coupe la courbe de g en deux points A et B.
- a) Déterminer les coordonnées des points A et B.
- b) Tracer la droite Δ dans le repère (O , \vec{i} , \vec{j}).
- c) Résoudre graphiquement l'inéquation : $\frac{(x-1)(3-x)}{x-2} < 0$

EXERCICE N°2 :(5 pts)

Le plan est muni d'un repère orthonormé (O , \vec{i} , \vec{j}). On donne les droites D et D' d'équations

respectives: 2 x - 3 y + 1 = 0 et 3 x + 2 y - 5 = 0.

- 1)a)Etablir que les droites D et D' sont perpendiculaires.
- b) Vérifier que A(1,1) est le point d'intersection de D et D'.
- 2) On désigne par E le point de la droite D d'abscisse 7 et par E' le point de D'd'abscisse -5.
- a) Déterminer les coordonnées des points E et E'.
- b) Calculer l'aire du triangle AEE'.
- c) En déduire la longueur de la hauteur [AH]du triangle AEE'.
- 4) Soit ζ l'ensemble des points M(x, y) tels que : $x^2 + y^2 2x + 6y m^2 = 0$; $m \in IR$
- a) Prouver que pour tout réel m, ζ est un cercle dont on déterminera le centre et le rayon.
- b) Déterminer les valeurs de m pour lesquelles la droite D est tangente au cercle ζ .

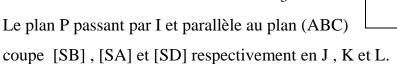
EXERCICE N° 3 : (4 pts)

Les notes obtenues par une classe dans un devoir de mathématiques et dans un devoir de physique sont les suivantes :

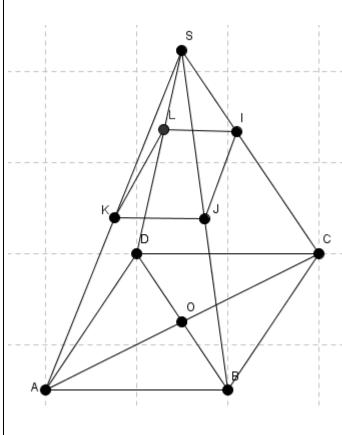
*Notes de mathématiques (X) :

9,12,10,10,10,12,13,9,8,12,10,10,11,11,10,10,12,9,11,8,10,11,8,11,9,7,10,12,9,10,8,9,10.

*Notes de physique (Y):


11,12,4,8,15,5,16,5,8,5,10,12,16,15,9,9,9,12,12,11,10,8,5,13,18,7,13,8,13,9,10,8,9.

- 1) Organiser les résultats précédents dans deux tableaux statistiques.
- 2) Calculer les moyennes arithmétiques \overline{X} et \overline{Y} .
- 3) Tracer les diagrammes en boites de chaque série de notes . Interpréter.


EXERCICE N°4:(6 pts)

SABCD est une pyramide dont la base ABCD est un carré de centre O et de coté a. Les triangles SAB et SCD sont équilatéraux.

- 1) Vérifier que les triangles SBC et SAD sont équilatéraux.
- 2)a) Déterminer le plan médiateur de [AC]
- b) Montrer que la droite (SO) et le plan (ABC) sont perpendiculaires.
- c) Déterminer alors l'axe du cercle circonscrit au carré ABCD.
- 3)a) Exprimer la distance SO en fonction de a .
- b) Calculer le volume de la pyramide SABCD en fonction de a.
- 4) Soit I le point de [SC] tel que : $SI = \frac{1}{2}SC$.

- a) Montrer que les droites (IJ) et (BC) sont parallèles et exprimer IJ en fonction de a.
- b) Prouver que IJKL est un carré.
- c) Calculer le volume du solide IJKLCBAD

BON TRAVAIL