2ème années secondaire

<u>Devoir de Synthèse N°3</u> <u>Mathématiques</u>

Le 24 / 05 / 2005 <u>Durée</u> : 2 H

Exercice N°1: (8 pts)

Soit
$$f(x) = (Cosx + \frac{1}{Cosx})^2 - Tg^2x$$
; avec $x \in [0, \pi] \setminus \left\{ \frac{\pi}{2} \right\}$

- 1-/ Calculer $f(\pi)$ et $f(\frac{2\pi}{3})$.
- 2-/ a) Montrer que : $f(x) = Cos^2 x + 3$.
 - b) En déduire que pour $x \in [0, \pi] \setminus \left\{ \frac{\pi}{2} \right\}$ on a : $3 < f(x) \le 4$
- 3-/ Soit $g(x) = Sin^2 x + Cosx + 3$
 - a) Montrer que : $f(x) g(x) = 2Cos^2x Cosx 1$.
 - b) Résoudre dans $[0,\pi]$: f(x) = g(x).
- 4-/ Soit *a* un réel de $[0,\pi] \setminus \left\{ \frac{\pi}{2} \right\}$ tel que $Tga = -2\sqrt{2}$ Calculer Cosa, Sina puis g(a).

5-/ Soit
$$A = Cos^2 \frac{\pi}{8} + Cos^2 \frac{3\pi}{8}$$
 et $B = Cos \frac{\pi}{8} + Cos \frac{7\pi}{8}$

- a) Calculer A et B.
- b) En déduire alors que : $f(\frac{\pi}{8}) + g(\frac{7\pi}{8}) + Cos \frac{\pi}{8} = 7$.

<u>Exercice $\mathcal{N}^{\circ}2:$ </u> (12 pts) (les parties I- et II- sont indépendantes)

On considère $R=(O, \vec{i}, \vec{j})$ un repère orthonormé du plan .

- I Soit les points E(4,-2); F(6,0) et G(0,2).
- 1-/ a) Montrer que \overrightarrow{EF} et \overrightarrow{EG} sont orthogonaux.
 - b) En déduire que E, F et G appartiennent à un même cercle ζ de centre I(3,1) et dont on déterminera le rayon R.
- 2-/ a) Ecrire une équation cartésienne de la droite Δ passant par E et parallèle à (FG).
 - b) Calculer la distance de point I à la droite Δ .
 - c) Ecrire une équation du cercle ζ' de **centre** G et **tangent** à Δ .

II - Soit $\alpha \in [0,\pi]$, on donne les droites D_1 et D_2 d'équations respectives :

$$D_1: (1 - Sin\alpha).x - Cos\alpha.y + \frac{1}{2} = 0$$
 et $D_2: (1 + Sin\alpha).x - Cos\alpha.y + 3 = 0$.

- 1-/ Déterminer α pour que $D_1 \perp D_2$
- 2-/ Soient les points : $A(Sin\alpha, Cos\alpha)$ et $B(Cos\alpha, -Sin\alpha)$.
 - a) Déterminer α pour que $A \in D_1$.
 - b) Montrer que pour tout $\alpha \in [0, \pi]$: $BA = \sqrt{2}$
- 3-/ Soit ξ l'ensemble des points M(x,y) vérifiant : $x^2 + y^2 (2Cos\alpha).x + (2Sin\alpha).y 1 = 0$ Montrer que ξ est un cercle de centre B et de rayon BA.
- 4-/ On prend $\alpha = \frac{5\pi}{6}$
 - a) Vérifier que l'équation cartésienne de D_1 est : $x + \sqrt{3}y + 1 = 0$
 - b) Déterminer les coordonnées du point A et l'équation de cercle ξ .
 - c) Montrer que ξ et D_1 se coupent en deux points A et A' dont on déterminera les coordonnées du point A'.

<u>Bon Travail</u>

