2ème Sciences 4 durée: 2 heures

Exercice 1 (3 points)

Pour chacune des questions, une seule des réponses A, B ou C est exacte. Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

1. Le sommet S de la parabole $\mathscr{P}: y = 2(x-2)^2 + 1$ a pour coordonnées :

 $\mathbf{A}:(2,1)$

 $\mathbf{B}:(-2,1)$

C:(2,-1)

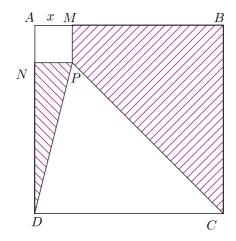
2. Les asymptotes de l'hyperbole $\mathcal{H}: y = \frac{2x+1}{r-1}$ sont :

 $\mathbf{A}:\Delta:x=1 \text{ et } \Delta':y=2$

 $\mathbf{B} : \Delta : y = 1 \text{ et } \Delta' : x = 2$ $\mathbf{C} : \Delta : x = -1 \text{ et } \Delta' : y = 2$

3. La courbe $\Gamma: x^2+y^2+2x-4y-4=0$ est :

A: un cercle


 $\mathbf{B}: \{ I(-1,2) \}$

 $\mathbf{C}: \varnothing$

Exercice 2 (5 points)

ABCD est un carré de coté 10 cm et AMPN est un carré de coté $x \in [0, 10]$. On désigne par S(x) l'aire de la partie hachurée.

- 1. Prouver que pour tout $x \in [0, 10], S(x) = -x^2 + 5x + 50.$
- (a) Construire le tableau de variation de S sur [0,10].
 - (b) pour quelle valeur de x l'aire S(x) est-elle maximale?
- 3. Déterminer l'ensemble des nombres $x \in [0, 10]$ tels que S(x) < Aire(AMPN).

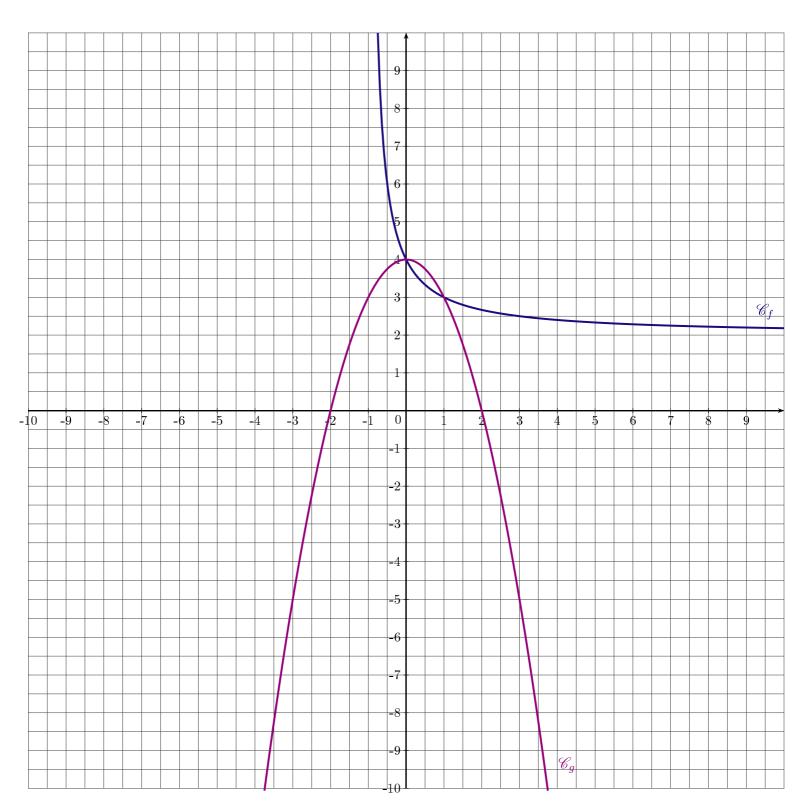
2ème Sciences 4 durée: 2 heures

Exercice 3 (5 points)

Le plan est muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$. On donne le point A(-4,1) et la droite $\Delta : y = 3x - 1$.

- 1. Calculer la distance du point A à la droite Δ .
- 2. Ecrire une équation cartésienne du cercle \mathscr{C} de centre A et tangent à Δ .
- (a) Ecrire une équation cartésienne de la droite Δ' passant par A et perpendiculaire à Δ .
 - (b) En déduire les coordonnées des points d'intersection de la droite Δ' et du cercle \mathscr{C} .

Exercice 4 (7 points)


Soit f la fonction définie par $f(x) = \frac{2x+4}{x+1}$. Dans l'annexe ci-dessous est tracée la courbe représentative notée C_f de f sur l'intervalle $]-1;+\infty[$, dans le plan muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

- 1. Préciser l'ensemble de définition de f.
- (a) Préciser les coordonnées du centre de l'hyperbole \mathscr{C}_f et les équations de ses asymptotes .
 - (b) Tracer sur l'annexe à rendre avec la copie les asymptotes de \mathscr{C}_f .
 - (c) Compléter la construction de \mathscr{C}_f .
- (a) Déterminer les réels a et b tels que $f(x) = a + \frac{b}{x+1}$.
 - (b) Étudier le sens de variation de la fonction f sur l'intervalle $]-1;+\infty[$.
- 4. Soit g la fonction définie sur \mathbb{R} par $g(x) = -x^2 + 4$ et \mathscr{C}_g sa courbe représentative tracée dans le repère $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$.
 - (a) Vérifier que pour tout $x \in \mathbb{R} \setminus \{-1\}$, $f(x) g(x) = \frac{x(x-1)(x+2)}{x+1}$
 - (b) Résoudre dans \mathbb{R} , l'équation g(x) = f(x).
 - (c) En déduire les coordonnées des points A,B et C intersection de \mathscr{C}_g et \mathscr{C}_f .
 - (d) Montrer que le triangle ABC est rectangle.
- 5. Résoudre graphiquement l'inéquation f(x) < g(x).
- 6. Tracer dans le même repère la courbe représentative \mathscr{C}_h de la fonction g définie par $h(x) = \frac{2x+4}{|x+1|}$.

2ème Sciences 4 durée : 2 heures

Annexe à rendre avec la copie

NOM ET PRENOM:....

