Mr Lazreg Imed 2^{ème} Sciences 1 05/11/2018

En Sciences physiques

Chimie (8 points)

Exercice N°1(4 points)

On considère l'atome symbolisé par ${}^{A}_{Z}X$.

- 1. donner la signification de chaque terme de cette représentation A et Z.
- 2. L'atome de magnésium a pour symbole $^{24}_{12}Mg$.
 - a. Donner la composition de son noyau.
 - b. Calculer la charge de son noyau, en déduire celle de son nuage électronique
- 3. Calculer la masse du noyau de magnésium
- 4. En déduire celle d'une mole d'atome de magnésium (on négligera la masse des électrons)

On donne $e = 1.6 \cdot 10^{-19} \text{ C}$ mn =mp = $1.67 \cdot 10^{-27} \text{ Kg}$ $\mathcal{H}_A = 6.02 \cdot 10^{23}$.

Exercice N°2(4 points)

On considère l'atome symbolisé par ${}_{Z}^{A}X$.

La charge totale de son noyau est $Qt = 27,2.10^{-19}$ C et sa masse est $m = 58,45.10^{-27}$ Kg

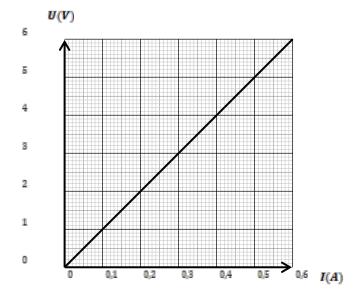
- 1. Déterminer le nombre de nucléons contenus dans son noyau
- 2. Donner alors son symbole complet.
- 3. Identifier cet atome, donner sa position dans la classification périodique des éléments (période, groupe).
- 4. Donner sa structure électronique en modèle en couche, en déduire sa formule électronique
- 5. Justifier la formation de l'anion correspondant

Elément chimique	S	Cl	Ar
Numéro atomique	16	17	18

Physique (12 points)

Exercice N°1(6 points)

Sur le disjoncteur d'une installation domestique on peut lire (16A, 220V)


- 1. Donner la signification de ces deux indications.
- 2. Rappeler le rôle d'un disjoncteur.
- 3. A l'intérieur de cette maison fonctionnent en même temps un réfrigérateur de puissance Pr= 1840 w, 4 lampes économiques de puissance PL= 25 w chacune un fer à repasser de puissance Pf = 580 W.
 - a. Calculer la puissance totale des dipôles qui fonctionnent dans cette maison.
 - b. On veut faire fonctionner sous la tension indiquée un lave vaisselle qui est traversé par un courant d'intensité I = 4,70 A : calculer la puissance qu'il consommera
 - c. Justifier que le disjoncteur ne supporte pas ce dipôle.
- 4. calculer en joule et en wattheure l'énergie que tous les dipôles en fonctionnement consomment en 15 minutes.

Exercice N°2(6points)

On donne la caractéristique intensité-tension d'un dipôle résistor.

- 1. Donner le schéma du circuit permettant de tracer cette caractéristique.
- 2. Justifier que ce dipôle est passif, linéaire et symétrique
- 3. Déterminer l'équation de cette caractéristique.
- 4. Rappeler la loi d'ohm aux bornes d'un dipôle résistor en déduire la valeur de sa résistance R.
- 5. Déterminer la valeur de l'intensité de courant à ses bornes lorsque U = 4 V

