Lycée secondaire					
Zaouia.	Ksiba.	Thravet			

Devoir de synthèse N°1 2ème année secondaire sciences 3

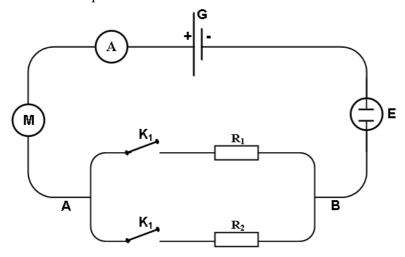

Professeur:

M. Adam Bouali

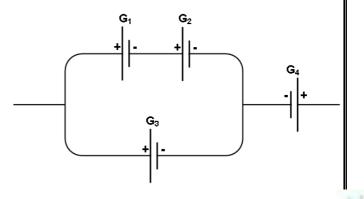
Durée	:	un	e	he	ure
UO —	1) _	7	Λ1	Λ

Atome	Aluminium (Al)	Oxygène (O)	
Charge du noyau	20,8.19 ⁻¹⁹ C	12,8.10 ⁻¹⁹ C	
Nombre d'électrons			
Formule électronique			
Dlaga dama la tal·las	N° de groupe :	N° de groupe :	2,5
Place dans le tableau			
périodique	N° de période :	N° de période :	
périodique Symbole de l'ion Donner la formule sta		N° de période : é par les ions aluminium et oxygène.	0,5
périodique Symbole de l'ion Donner la formule sta De quel type sont les ERCICE N°2: considère les éléments L'hydrogène: H (Z Le carbone: C; il p	tistique du composé neutre form liaisons entre ces ions ? chimiques suivants : = 1) ossède 4 électrons sur la couche	é par les ions aluminium et oxygène. L.	
périodique Symbole de l'ion Donner la formule sta De quel type sont les ERCICE N°2: considère les éléments L'hydrogène: H (Z Le carbone: C; il p L'azote: N; il appa	tistique du composé neutre form liaisons entre ces ions ? chimiques suivants : = 1)	é par les ions aluminium et oxygène. L. période.	

3) La formule de la molécule d'éthylamine est C₂H₇N. On propose la représentation de Lewis de cette molécule.

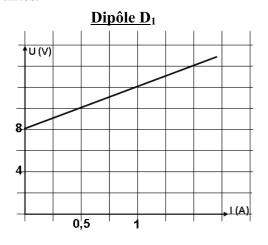


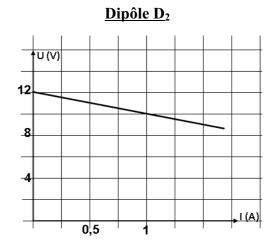
a. Montrer que cette représentation de Lewis de la molécule d'éthylamine est incorrecte. 0,5 **b.** Donner la représentation de Lewis correcte de la molécule d'éthylamine. 0.75 B

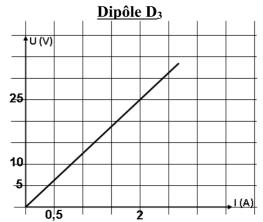

PHYSIQUE: 12 POINTS

EXERCICE N°1:

On considère le circuit électrique schématisé ci-dessous.


- G est un générateur de fem E et de résistance interne r.
- M est un moteur de fcem $E'_1 = 2.5 \text{ V}$ et de résistance interne $r'_1 = 1.5 \Omega$.
- E est un électrolyseur de fcem $E'_2 = 1.5 \text{ V}$ et de résistance interne $\mathbf{r'}_2 = 1 \Omega$.
- \mathbf{R}_1 est un résistor de résistance $\mathbf{R}_1 = 3 \Omega$.
- $\mathbf{R_2}$ est un résistor de résistance $\mathbf{R_2} = \mathbf{6} \Omega$.
- K_1 et K_2 sont deux interrupteurs.
- A. Le générateur G est composé par une association de 4 générateurs montés comme l'indique le schéma ci-contre, avec
 - $G_1 (E_1 = 13 \text{ V} ; r_1 = 1 \Omega)$
 - $G_2 (E_2 = 7 \text{ V} ; r_2 = 0.5 \Omega)$




➤ Trouver la fem E et la résistance équivalente r du générateur G équivalent.		
	1,5	В
 B. On prendra pour la suit de l'exercice : E = 12 V et r = 2,5 Ω. I. On ferme l'interrupteur K₁ et on laisse K₂ ouvert. 1) Déterminer l'intensité du courant, I, indiquée par l'ampèremètre. 		
-,	1	B
2) Déterminer la puissance électrique, P_G , fournie par le générateur au circuit extérieur.	0,5	A
3) Déterminer la puissance électrique, P _{th} , dissipée par effet joule dans le circuit extérieu	ır. 1	A
4) Déterminer la puissance électrique, P_{utile} , transformée en puissance utile par le c extérieur.	circuit	В
	0,75	A B
5) Si on bloque le moteur, est-ce que l'ampèremètre indiquera une autre valeur de l'inter Si oui calculer cette valeur.	nsité ?	B
 II. On ferme les deux interrupteurs K₁ et K₂. L'ampèremètre indique une nouvelle intensité Le résistor R₁ dissipe 28,8 J en une minute de fonctionnement. 1) Déterminer la valeur de I'₁, l'intensité du courant qui traverse le résistor R₁. 	 έ Ι' .	
· · · · · · · · · · · · · · · · · · ·	0,5	B
2) En déduire la tension U _{AB} .	0,25	A
3) Déterminer l'intensité du courant I'2 qui traverse le résistor R ₂ . Déduire la valeur de I'	0,75	B
4) Calculer donc les valeurs des tensions aux bornes du générateur, du moteur l'électrolyseur.	et de 0,75	B

EXERCICE N°2:

On considère les caractéristiques intensité-tension de trois dipôles électriques D_1 , D_2 et D_3 , suivantes.

1) 	Attribuer à chaque caractéristique la nature de son dipôle électrique.	0,75	A
2)	Déterminer la ou les grandeurs caractéristiques de chaque dipôle.	1,25	В
3)	Ces trois dipôles sont associés en dérivation, comme l'est indiqué ci contre. Sachant que le rendement du dipôle D_1 est $\rho=80$ %, montrer que la tension aux borne de ce dipôle est $U=10$ V.	0,5	6
4) 	Déduire les valeurs des intensités I_1 , I_2 et I_3 parcourant respectivement D_1 , D_2 et D_3 .	1,5	В