Lycée secondaire Thala

<u> Prof : Khedimi Sami</u>

Devoir de synthèse N°2 SCIENCES PHYSIQUES

Classe :2^{eme}SC

Durée : 2heure

CHIM IE (8 Pts):

Exercice N° 1:

- I / On considère deux solutions aqueuses SA et SB.
- S_A : Une solution aqueuse d'acide chlorhydrique ($H_3O^{-} + CL^{-}$) de concentration molaire $C_A = 0.05 \text{mol}L^{-1}$.

S_B: solution aqueuse d'acide chlorhydrique (Na⁺ + OH⁻) de concentration molaire C_B inconnue.

Pour doser la solution S_B, on prélève un volume V_B = 10 ml de cette solution auquel on ajoute

Quelques gouttes de bleu de bromothymol et on ajoute progressivement la solution S_A . on constate que le bleu de bromothymo vire du bleu au vert pour un volume

V_A =16ml.

- 1) Que signifie le changement de couleur du B.B.T. (0.25 pts)
- 2) Ecrire l'équation de la réaction du dosage acido-basique . (0. 5 pts)
- 3) Calculer la concentration molaire C_B de la solution S_B . (0. 5 pts)
- II / On mélange un volume V'_A =20ml de la solution S_A d'acide chlorhydrique de concentration C_A =0.05molL⁻¹ avec un volume V'_B =30ml d'une solution S'_B de soude de concentration C'_B =0.1molL⁻¹
- 1) a) le mélange obtenu est –il à l'équivalence acido-basique ? Justifier. (1 pts)
 - b) Calculer la molarité des ions présentes dans ce mélange. (0.5 pts)
 - c) En déduire le pH de ce mélange . (0.25 pts)
- 2) On désire réaliser l'équivalence en ajoutant un volume V' de l'une des solution S_A ou S'_B à ce mélange .
 - a) Préciser en le justifiant laquelle des solutions il faut ajouter . (0.5 pts)
 - b) Déterminer le volume V'. (0.5 pts)
 - c) Calculer la masse du sel dissout dans le mélange à l'équivalence . (0.5 pts)

on donne: $M_{CL}=35.5g.mol^{-1}$; $M_{Na}=23 g.mol^{-1}$; $2.5=10^{0.4}$

Exercice N° 2:

1)Donner le nom de chacun des hydrocarbures suivants : (1 pts)

d)
$$CH_3 - CH_2 - C = C - CH - CH_3$$

| $CH_2 - CH_5$

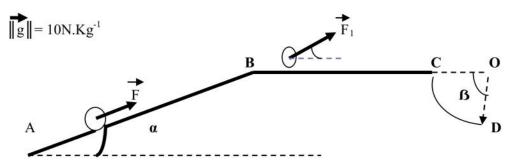
2) Ecrire la formule semi – développée de chacun des hydrocarbures suivants : (0.75 pts)

a/ 4-éthyle,2 - méthylehept-2-éne

b/ 2,4 - diméthylhex-2-éne.

c / 4- méthylpent-2-yne .

3) On considére un hydrocarbure aliphatique (A) de formule brute C_5H_{12} .


a/A quelle famille appartient cet hydrocarbure . (0.75 pts)

c/Ecrire les formules semi -développées et donner les nom des différents isomères

correspondant à cette formule brute . (1 pts)

Physique

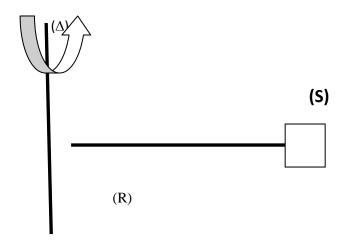
Exercice n°1:

Un solide ponctuel S de masse m= 500g . se déplace de A vers D, en suivant la piste ABCD située

Dans un plan vertical (figure 1).

- 1)Sur la partie AB de longueur L= 80 cm et faisant un angle α = 30° avec l'horizontale , le solide se déplace sans frottements et est soumis à une force F parallèle à AB et de valeur égale à 5N .
 - a) Représenter, sur la figure les différentes forces exercées sur le solide S entre A et B (1pts)
 - b) Calculer le travail de chacune de ces forces au cours du déplacement de A vers B . (1pts)
 - c) Préciser pour chaque forces si le travail est moteur ou résistant. (0.5pts)
- 2) le long du trajet horizontale BC de longueur L' = 60cm le solide S est soumis :
 - * à une force motrice F_1 de valeur égale à 2.5N et faisant un angle Θ avec l'horizontale .
 - * à une force de frottement \hat{f} , de même direction que BC ,opposée au mouvement et de valeur $\|f\|$ constante .

le mouvement de S de B vers C se fait avec une vitesse de valeur V=3.2m.s⁻¹.


- a) Exprimer la puissance développée par la force F_1 en fonction de $\|F_1\|$: V et Θ . (0.5pts)
- b) Sachant que la valeur de cette puissance est P=4w. déterminer la valeur de Θ (0.5pts)
- c) Le long du trajet BC ,la somme des travaux de toutes les forces qui s'exercent sur le solide est nulle . (1.5pts) \blacksquare Exprimer la valeur de f en fonction de $\|F_1\|$ et Θ . le calcule
- 3) le déplacement du solide S sur l'arc de cercle CD (d'angle d'ouverture $\beta=30^\circ$, de centre O et de rayon r = 25 cm) duré $\Delta t=0.25~s$.
- a) Exprimer le travail du poids de S au cours de son déplacement de C vers D, en fonction de r; β ; m et $\|g\|$. (1pts)
- b) Calculer la puissance moyenne développée par le poids de S au cours de ce déplacement de C vers B. (1pts)

Exercice n°2:

La figure représente un ressort de longueur à Vide I_0 = 48 cm enfilé sur une tige (T) horizontale fixée à Un axe de rotation (Δ) verticale. Ce ressort est fixé à (Δ) à l'une de ses extrémités ; L'autre extrémité est fixée à un solide ponctuel (S) Pouvant coulisser sas frottement sur la tige (T) .

Le système est mis en rotation à la vitesse angulaire constante.

Le solide (S) effectue un mouvement circulaire uniforme avec une fréquence $\,N$ =0.50Hz .le ressort est allongé de ΔI = 1cm

- 1) a) Définir la période et la fréquence . (1pts)
 - b) Déterminer la période du mouvement . (1pts)
- 2) Déterminer la vitesse angulaire du mouvement. (1pts)
- 3) Déterminer la vitesse linéaire du mobile. (1pts)
- 4) la tension du ressort au cours du mouvement est $\|T\|$ =3N.

Déduire la raideur du ressort. (1pts)