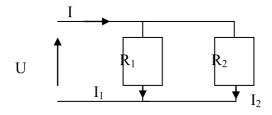

<u>Série 4</u> Les récepteurs passifs (1)

2ème sciences

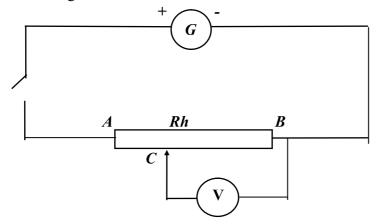
Exercice n°1

1/Diviseur de tension


On donne le montage suivant

Montrer que $U_2 = \frac{R_2}{R_1 + R_2} *U$, puis expliquer l'appellation **Diviseur de tension**

2/ **Diviseur de courant**

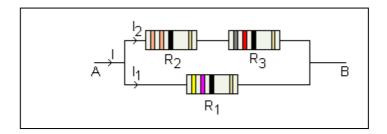

On donne le montage suivant

Montrer que $I_1 = \frac{R_2}{R_1 + R_2} * I$ et $I_2 = \frac{R_1}{R_1 + R_2} * I$, puis expliquer l'appellation **Diviseur d'intensité**

Exercice n°2

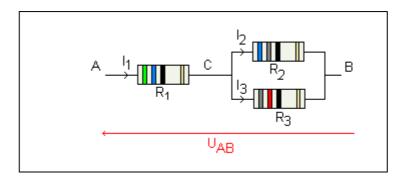
On réalise le montage suivant

On mesure les tensions suivantes quand l'interrupteur est fermé a)entre les points C et B b) entre les points A et B


U1 = 50 V U2 = 125 V

- 1-Calculer le rapport des résistances RCB /R AB
- 2- Calculer la résistance RCB et . RAC on donne R AB = 100Ω

Exercice n°3


On réalise le circuit ci-contre où R_1 =47 Ω , R_2 =33 Ω et R_3 =82 Ω . On applique entre les bornes A et B une tension U_{AB} =12V.

- 1. Quelle est l'intensité l₁ du courant traversant R₁?
- **2.** Quelle est l'intensité I_2 du courant traversant R_2 ? En déduire la tension aux bornes de la résistance R_3 .
- **3.** Calculer la valeur de l'intensité I du courant dans la branche principale. En déduire la valeur de la résistance équivalente R du circuit.
- 4. Retrouver la valeur de R en utilisant les lois d'association des conducteurs ohmiques.

Exercice n°4

On réalise le circuit ci-contre où R_1 =56 Ω , R_2 =68 Ω et R_3 =82 Ω . On applique entre les bornes A et B une tension U_{AB} =6V.

- **1.** Calculer la résistance équivalente R du dipôle AB.
- 2. Déterminer l'intensité du courant I₁ traversant R₁.
- **3.** Calculer la tension U_{AC} .

- 4. Calculer les intensités I₂ et I₃ des courants traversant R₂ et R₃
- 5- Calculer la valeur de la conductance G de cette association en siemens

Exercice n°5

Dans chacun des montages ci-dessous, déterminez la résistance équivalente à l'ensemble des résistors (c'est la résistance vue du générateur de tension).

Dans les deux cas, calculez l'intensité I du courant débité par le générateur.

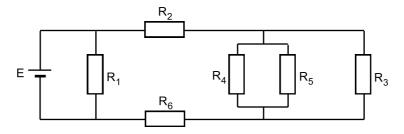


Figure 1

$$E=$$
 1,5 V ; $R_1=$ 15 Ω ; $R_2=$ 2 Ω ; $R_3=$ 4 Ω ; $R_4=$ 12 Ω ; $R_5=$ 6 Ω ; $R_6=$ 1 Ω .

Exercice n°6

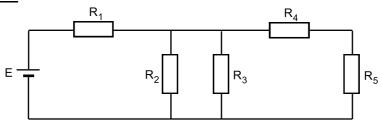


Figure 2

Tous les résistors ont la meme resistance R.

- 1-Déterminez en fonction de R la résistance équivalente Req à l'ensemble des résistors (c'est la résistance vue du générateur de tension).
 - 2-On donne R = 10 Ω , calculer la résistance équivalente Req et la conductance G
 - 3-en déduire l'intensité I du courant débité par le générateur. On donne E = 5V