
<u>Les récepteurs passifs (2)</u>

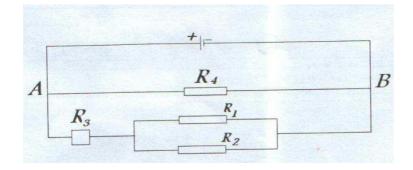
Exercice n°1

On considère le montage schématisé ci-dessous avec:

- * G un générateur de courant continu et K un interrupteur.
 - * R₁; R₂; R₃ trois résistors.

On donne: $R_1=24 \Omega$; $R_2=8 \Omega$; $R_3=4 \Omega$ et $U_{AC}=6V$.

- 1) a- Donner la résistance R' du résistor équivalent à R_2 et R_3 . b- Chercher la résistance R du résistor équivalent à R_1 ; R_2 et R_3 .
- 2) a- Déterminer les intensités du courant qui traversent respectivement chacun de
 - b-Calculer les tensions U_{AB} et U_{BC} respectivement aux bornes de chacun de résistors R₂ et R₃.
- 3) On supprime le résistor R_3 et on intercale un ampèremètre entre les points B et C du montage Précédent tout en gardant la tension U_{AC} égale à 6V.
- a- Déterminer les intensités de courants l₁ et l₂ qui traversent respectivement les résistors R₁ et R₂. b- En déduire l'intensité I du courant principal dans le circuit.

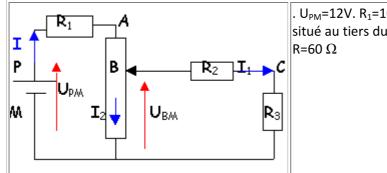

Exercice n°2

Dans le circuit électrique ci-dessous :

résistors R_1 ; R_2 et R_3 .

G est un générateur, RI, R2, R3 et R4 sont quatre dipôles resistors de résistances respectives : RI= 10Ω , R2= 40Ω , R3= 22Ω et R4:= 120Ω sachant que l'intensité du courant débité par le générateur est l= 6A, déterminer :

- 1- La résistance R' du resistor équivalent à R1 et R2.
- 2- La résistance R du résistor équivalent à R1, R2, R3 et R4.



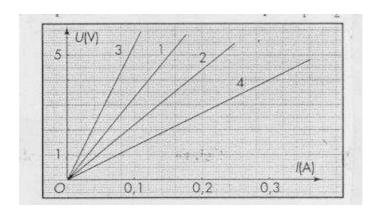
- 3-determiner La tension uAB
- 4- determiner L'énergie dissipée par effet joule dans 'ensemble des resistors pendant 5 mn

On dispose d'un circuit électrique constitué par trois résistors de résistance R1, R2 = 40 Ω , R3 = 10 Ω , un générateur de tension continue et un interrupteur K. (Voir Figure).

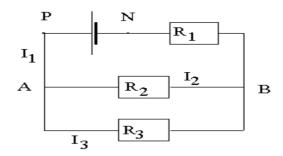
- 1°/ L'interrupteur K est ouvert : un ohmmètre branché entre les points A et B indique Req = 20Ω .
- a- Définir l'effet Joule.
- b-Comment sont branchés les résistors R1 et R2?
- c- Montrer que la valeur de la résistance R1 est 40Ω .
- d-Préciser le code couleurs de la résistance R1 à 5 pourcent d'erreur.

Exercice n°3

. U_{PM}=12V. R₁=10 Ω ;R₂=10 Ω ; R₃=5 Ω . Le point B est situé au tiers du potentiomètre de résistance totale R=60 Ω


- 1. Quelle est la résistance équivalente R₄ à l'association de R₂ et R₃?
- 2. Quelle est la résistance équivalente R5 à la portion du potentiomètre comprise entre B et M.
- 3. Quelle est la résistance équivalente R à tous les résistors du circuit ?
- 4. Calculer les intensités des courants I, I1 et I2
- 5. Calculer la puissance consommée par chaque résistor R₁;R_{2,et} R₃

Exercice n°4

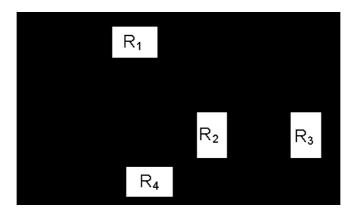

Les parties A et B sont indépendantes

A/Les droites 1 et 2 représentent les caractéristiques de deux conducteurs ohmiques R_1 et R_2 .

- 1) Déterminer les valeurs de ces deux résistances.
- 2) Quelle est la droite qui correspond à la caractéristique du groupement série de R_1 et R_2 ? Expliquer et vérifier par le calcul.
- 3) Même question pour le groupement en parallèle de R₁ et R₂.

B/ On considère le circuit ci-dessus pour lequel le générateur maintient entre ses bornes une tension constante $U_{PN}=6V$; On donne : $R_1=47~\Omega$; $R_2=1.0~k\Omega$ et $I_2=5.0~mA$.

- 1. Indiquer sur la figure le sens de chaque courant. Calculer la tension U_{AB} .
- 2. Calculer l'intensité du courant I_1 qui traverse le générateur .
- 3. En déduire l'intensité du courant I_3 et la résistance R_3 .
- 4. Calculer la puissance électrique consommée par chacun des conducteurs ohmiques de ce montage.

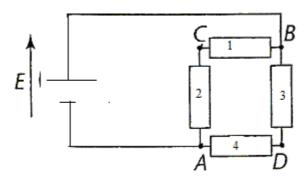


5. On veut utiliser le générateur précédent pour alimenter une diode D. Cette diode doit fonctionner avec à ses bornes une tension de 0,60 V. Elle consomme alors une puissance électrique de 0,10 watt.

Montrer qu'il faut monter en série avec le générateur et la diode un conducteur ohmique de résistance convenable R. Calculer cette résistance R.

Exercice n°5

On applique aux bornes A et B du montage ci-dessus une tension électrique UAB


On donne les valeurs suivantes :

$$U_{AB}$$
 = 12 V ; R_1 = 60 Ω ; R_2 = 200 Ω ; R_3 = 300 Ω ; R_4 = 20 $\Omega.$

- 1. Calculer la résistance équivalente Re aux deux résistances R₂ et R₃.
- 2. Calculer la résistance équivalente à l'ensemble du circuit (dipôle AB).
- 3. Déterminer l'inten€ité l₁ du courant dans la résistance R1.
- **4.** Calculer les tensions U_{CD} , U_{AC} et U_{DB} .
- **5.** Déterminer les intensités I₂ et I₃ dans les résistances R2 et R3.

Exercice n°6

On considère le montage suivant

Les quatre conducteurs ohmiques sont identiques R= 10 Ω ; E= 6,0 V

- 1. Calculer la résistance équivalente entre les points A et B du circuit.
- 2. En déduire l'intensité du courant traversant le générateur.
- 3. Calculer la puissance du transfert par effet joule pour l'ensemble des conducteurs ohmiques.
- 4. Dans un catalogue de composants on a le choix entre les puissances nominales suivantes : 0,25 W, 1/3 W, 2/3 W et 1W. Laquelle choisir pour R afin d'éviter un phénomène de surchauffe?
- 5. Expliquer pourquoi le conducteur ohmique de résistance R trouvée précédemment ne peut être utilisé seul entre les bornes A et B du circuit.

