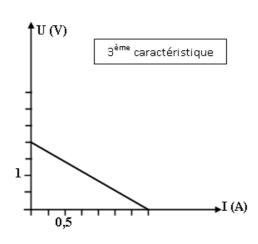
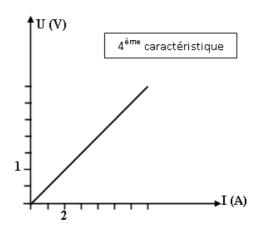
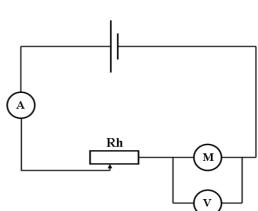

Série n° 5


(Loi d'Ohm d'un moteur – Formation des molécules)


Exercice n° 1:

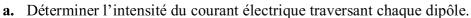
On donne les caractéristiques intensité-tension suivantes. Identifier le dipôle correspondant à chaque caractéristique ainsi que la loi d'Ohm relative.



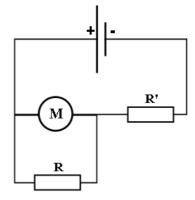
Exercice n° 2:

On réalise le montage ci-contre. On donne :

- Pour une première position du curseur du rhéostat une résistance \mathbf{R}_1 . Le voltmètre indique $\mathbf{U}_1 = \mathbf{5,6}$ V et l'ampèremètre indique $\mathbf{I}_1 = \mathbf{0,2}$ A.
- Pour une deuxième position du curseur du rhéostat une résistance R_2 . Le voltmètre indique $U_2 = 6.5$ V et l'ampèremètre indique $I_2 = 0.5$ A.
- 1) Déterminer la résistance interne du moteur.
- 2) Ecrire la loi d'Ohm relative à un moteur.
- 3) En déduire la force contre électromotrice de ce moteur.
- 4) Représenter la caractéristique $U_M = f(I)$ du moteur en utilisant l'échelle suivante : 1 cm pour 0.1 A et 1 cm pour 1 V



- 5) Vérifier graphiquement la valeur de la force contre électromotrice E' du moteur.
- 6) Déterminer, enfin, les valeurs des résistances R_1 et R_2 du rhéostat dans cette expérience, étant donné que la tension du générateur garde la même valeur $U_G = 12 \text{ V}$.


Exercice n° 3:

Un moteur électrique, de force contre électromotrice E' et de résistance interne $r'=4~\Omega$, fonctionne normalement sous une tension électrique $U_M=120~V$ et consomme une puissance électrique $P_M=480~W$.

- 1) Calculer, lorsque le moteur est en fonctionnement normal :
- a. L'intensité du courant électrique qui le parcourt.
- b. Sa force contre électromotrice E'.
- **c.** La puissance utile et la puissance thermique qu'il dissipe par effet Joule.
- **d.** Son rendement.
- 2) Pour faire fonctionner ce moteur normalement (dans les conditions de la question précédente), on réalise le circuit ci contre, où la tension entre les bornes du générateur est $U_G = 200 \text{ V}$, R est un résistor de résistance $R = 10 \Omega$ et R' est un deuxième résistor de résistance R inconnue.

- **b.** En déduire la valeur de la résistance **R**'.
- c. Calculer la puissance électrique totale fournie par le générateur.

Exercice n° 4:

On donne les atomes suivants : H(Z=1); C(Z=6); N(Z=7); F(Z=9); O(Z=8) et O(Z=17).

1) Compléter le tableau suivant :

Atome	Structure électronique	Formule électronique	Nombre de doublets	Nombre de liaisons covalentes qu'il peut établir
Н				
C				
N				
F				
Cl				

- 2) Donner le schéma de Lewis de chacune de ces molécules : H₂ HCl NH₃ C₂H₆ NCl₃, et CCl₄.
 - a. Préciser pour chaque molécule les doublets liants et non liants.
 - **b.** Préciser pour chaque atome la nature des liaisons.

