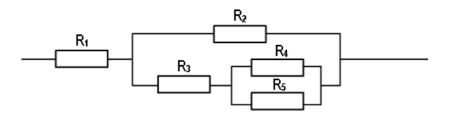
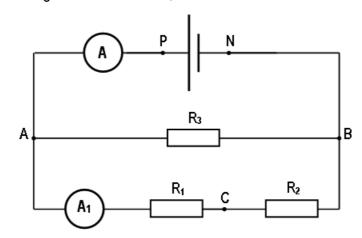

Obérie n° 2


Les dipôles passifs - Modèle de l'atome

Exercice n° 1:

Calculer la résistance équivalente de chacune des associations suivantes :


 R_1 = 100 Ω ; R_2 = 150 Ω ; R_3 = 100 Ω et R_4 = 500 Ω.

 R_1 = 20 Ω ; R_2 = 60 Ω ; R_3 = 28 Ω ; R_4 = 30 Ω et R_5 = 20 Ω .

Exercice n° 2:

On considère le montage de la figure ci-contre où R₁, R₂ et R₃ sont trois résistors.

- 1) La mesure de la tension aux bornes de R_1 donne $U_1 = 5 V$, celle aux bornes de R_3 est $U_3 = 12 V$.
- a) Représenter sur le schéma du circuit les appareils de mesures convenables permettant de mesurer les tensions U₁ et U₃.
- b) Déterminer la tension U_{PN} aux bornes du générateur et la tension U₂ aux bornes de R₂?

- 2) L'ampèremètre A indique le passage d'un courant d'intensité I = 0,5 A, et l'ampèremètre A₁ est un ampèremètre à aiguille, il est réglé sur le calibre 0,3 A, son aiguille s'arrête indique la graduation 20 sur l'échelle 30.
 - a) Rappeler la loi des nœuds.
 - b) Déterminer les valeurs des intensités des courants l₁ et l₃ traversant respectivement les résistors R₁ et R₃.
 - c) Déduire l'intensité du courant l₂ traversant le résistor R₂.
 - d) Déterminer les valeurs des résistors R₁, R₂ et R₃.
- 3) Déterminer la résistance équivalente Req de l'association des résistors R₁, R₂ et R₃.
- 4) Calculer le rapport $\frac{U_{PN}}{I}$ et le comparer avec la résistance équivalente R_{eq} . Conclure.
- 5) a) Calculer les puissances P₁, P₂ et P₃ reçues par les résistors R₁, R₂ et R₃.
- **b)** Déterminer l'énergie électrique consommée par chacun de ces résistors au bout de trois quarts d'heure de fonctionnement.
- c) En quelle forme d'énergie cette énergie est-elle transformée par ces résistors. En déduire le type de ces dipôles.

Exercice n° 3:

L'ion magnésium Mg²⁺ possède 10 électrons et 12 neutrons.

- 1) Calculer la charge du noyau de l'ion magnésium. Déduire, en le justifiant, celle de l'atome correspondant.
- 2) a) Définir l'élément chimique.
 - b) Déterminer le numéro atomique de l'élément magnésium.
 - c) Déterminer le nombre de masse de cet élément.
 - d) Donner la représentation symbolique du noyau de l'élément magnésium.
- 3) L'élément magnésium possède deux autres isotopes, l'un possède 13 neutrons et l'autre possède 26 nucléons et qui sont respectivement dans les proportions 10 % et 11 %.
 - a) Définir les isotopes d'un élément chimique.
 - b) Calculer la masse molaire de l'élément magnésium.

On donne : $e = 1,6.10^{-19} C$; $m_{nuc} = 1,67.10^{-24} g$ et $N = 6.02.10^{23}$.