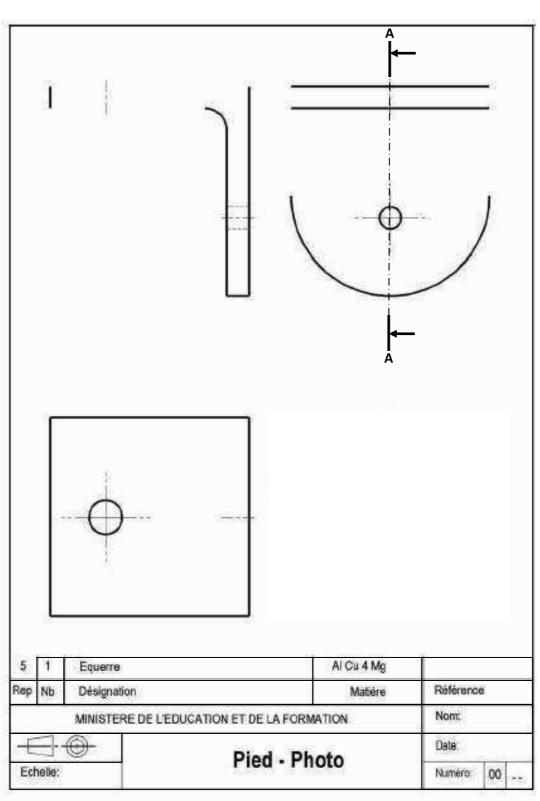


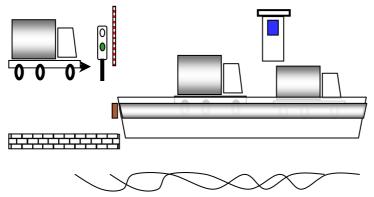
I- Définition graphique d'un produit : (7.5 pts)

Système: pied - photo



Le pied –photo représenté ci contre permet la mise en position d'une camera pendant les prise des photos

- 1) colorier l'équerre (5)
- 2) compléter le dessin de définition de l'équerre par
- -vue de face en coupe A-A
- vue de dessus
- vue de gauche


La colonne (2) est assimile à une poutre cylindrique pleine de diamètre d, sollicité à la compression due à l'effort F de valeur 2000N 1°) Le matériau de la tige est désigné par : A1 Sachant qu'elle a pour limite d'élasticité R _e = 1000 N/mm². On adopte un coefficient de sécurité s=3 a- Rappeler la condition de résistance : b- Calculer la section minimale de la tige pour qu'elle résiste en toute sécurité. 1 1 1 1 1 1 1 1 1 1 1 1 1	II- Resistance des materiaux (/ pts)			
1°) Le matériau de la tige est désigné par : A1 Sachant qu'elle a pour limite d'élasticité R _* = 1000 N/mm². On adopte un coefficient de sécurité s=3 a- Rappeler la condition de résistance : b- Calculer la résistance pratique Rpe : Rpe =	La colonne (2) est assimile à une poutre cylindrique pleine de diamètre d,	sollicité à la compre	ession due à l'effo	ort
Sachant qu'elle a pour limite d'élasticité R_e = 1000 N/mm². On adopte un coefficient de sécurité s =3 a- Rappeler la condition de résistance: b- Calculer la résistance pratique Rpe : Rpe =	F de valeur 2000N			
a- Rappeler la condition de résistance : b- Calculer la résistance pratique Rpe : Rpe = c- Calculer la section minimale de la tige pour qu'elle résiste en toute sécurité. 1 2 [On admet, dans ce qui suit, que S _{min} = 6 mm²] d- Déduire le diamètre minimal d _{mia} . 2 2 [On remplace le matériau de la tige par un autre de désignation A2 On désire que celle-ci ait le même allongement (sous la même charge N) que la tige précèdente (ε ₁ = ε ₂). a- Rappeler la loi de Hooke : b- Donner l'expression de ε ₁ et ε ₂ respectivement en fonction de σ ₁ , Ε ₁ , σ ₂ et Ε ₂ . ε ₁ = ε ₂ = c- Calculer la section S ₂ de cette tige. On donne dans le tableau ci-contre les modules de YOUNG. Module de Young (N'mm²) (N'mm²) A1	1°) Le matériau de la tige est désigné par : A1			
a- Rappeler la condition de résistance : b- Calculer la résistance pratique Rpe : Rpe = c- Calculer la section minimale de la tige pour qu'elle résiste en toute sécurité. 1 2 [On admet, dans ce qui suit, que S _{min} = 6 mm²] d- Déduire le diamètre minimal d _{min} . 2°) On remplace le matériau de la tige par un autre de désignation A2 On désire que celle-ci ait le même allongement (sous la même charge N) que la tige précédente (ε ₁ = ε ₂). a- Rappeler la loi de Hooke : b- Donner l'expression de ε ₁ et ε ₂ respectivement en fonction de σ ₁ , Ε ₁ , σ ₂ et E ₂ . ε ₁	Sachant qu'elle a pour limite d'élasticité $R_e = 1000 \text{ N/mm}^2$. On adopte un ϵ	coefficient de sécuri	té s=3	
c- Calculer la section minimale de la tige pour qu'elle résiste en toute sécurité.	a- Rappeler la condition de résistance :			0.5
[On admet, dans ce qui suit, que $S_{min} = 6 mm^2$] d- Déduire le diamètre minimal d_{min} . $ \frac{d_{min} = \dots}{d_{min} = \dots} $ 2°) On remplace le matériau de la tige par un autre de désignation $A2$ On désire que celle-ci ait le même allongement (sous la même charge N) que la tige précédente ($\epsilon_1 = \epsilon_2$). a- Rappeler la loi de Hooke: b- Donner l'expression de ϵ_1 et ϵ_2 respectivement en fonction de σ_1 , ϵ_1 , σ_2 et ϵ_2 . $\epsilon_1 = \dots \qquad \qquad$	b- Calculer la résistance pratique Rpe : Rpe =			
[On admet, dans ce qui suit, que $S_{min} = 6 mm^2$] d- Déduire le diamètre minimal d_{min} . 1 2°) On remplace le matériau de la tige par un autre de désignation $A2$ On désire que celle-ci ait le même allongement (sous la même charge N) que la tige précédente ($\epsilon_1 = \epsilon_2$). a- Rappeler la loi de Hooke: b- Donner l'expression de ϵ_1 et ϵ_2 respectivement en fonction de σ_1 , ϵ_1 , σ_2 et ϵ_2 . $\epsilon_1 = \dots \qquad \qquad \epsilon_2 = \dots \qquad \qquad$	c- Calculer la section minimale de la tige pour qu'elle résiste en toute	e sécurité.		1
[On admet, dans ce qui suit, que $S_{min} = 6 mm^2$] d- Déduire le diamètre minimal d_{min} . 1 2°) On remplace le matériau de la tige par un autre de désignation $A2$ On désire que celle-ci ait le même allongement (sous la même charge N) que la tige précédente ($\epsilon_1 = \epsilon_2$). a- Rappeler la loi de Hooke: b- Donner l'expression de ϵ_1 et ϵ_2 respectivement en fonction de σ_1 , ϵ_1 , σ_2 et ϵ_2 . $\epsilon_1 = \dots \qquad \qquad \epsilon_2 = \dots \qquad \qquad$		•••••	•••••	
[On admet, dans ce qui suit, que $S_{min} = 6 mm^2$] d- Déduire le diamètre minimal d_{min} . 1 2°) On remplace le matériau de la tige par un autre de désignation $A2$ On désire que celle-ci ait le même allongement (sous la même charge N) que la tige précédente ($\epsilon_1 = \epsilon_2$). a- Rappeler la loi de Hooke: b- Donner l'expression de ϵ_1 et ϵ_2 respectivement en fonction de σ_1 , ϵ_1 , σ_2 et ϵ_2 . $\epsilon_1 = \dots \qquad \qquad \epsilon_2 = \dots \qquad \qquad$				
[On admet, dans ce qui suit, que $S_{min} = 6 \text{mm}^2$] d- Déduire le diamètre minimal d_{min} . 2°) On remplace le matériau de la tige par un autre de désignation $A2$ On désire que celle-ci ait le même allongement (sous la même charge N) que la tige précédente ($\epsilon_1 = \epsilon_2$). a- Rappeler la loi de Hooke: b- Donner l'expression de ϵ_1 et ϵ_2 respectivement en fonction de σ_1 , ϵ_1 , σ_2 et ϵ_2 . $\epsilon_1 = \dots \qquad \qquad$				
[On admet, dans ce qui suit, que $S_{min} = 6 mm^2$] d- Déduire le diamètre minimal d_{min} . 2°) On remplace le matériau de la tige par un autre de désignation $A2$ On désire que celle-ci ait le même allongement (sous la même charge N) que la tige précédente ($\epsilon_1 = \epsilon_2$). a- Rappeler la loi de Hooke: b- Donner l'expression de ϵ_1 et ϵ_2 respectivement en fonction de σ_1 , ϵ_1 , σ_2 et ϵ_2 . $\epsilon_1 = \dots \qquad \qquad$		<u>s</u>) _{min} =	2
d- Déduire le diamètre minimal d_{min}	[On admet dans ce qui suit que $S_{\perp} = 6 \text{ mm}^2$]	L		
2°) On remplace le matériau de la tige par un autre de désignation $A2$ On désire que celle-ci ait le même allongement (sous la même charge N) que la tige précédente ($\mathbf{\epsilon}_1 = \mathbf{\epsilon}_2$). a- Rappeler la loi de Hooke: b- Donner l'expression de $\mathbf{\epsilon}_1$ et $\mathbf{\epsilon}_2$ respectivement en fonction de σ_1 , E_1 , σ_2 et E_2 . $\mathbf{\epsilon}_1 = \dots \qquad \qquad$				
2°) On remplace le matériau de la tige par un autre de désignation $A2$ On désire que celle-ci ait le même allongement (sous la même charge N) que la tige précédente ($\mathbf{\epsilon}_1 = \mathbf{\epsilon}_2$). a- Rappeler la loi de Hooke :	u- Deduite le diametre minimal u _{min} .			
2°) On remplace le matériau de la tige par un autre de désignation $A2$ On désire que celle-ci ait le même allongement (sous la même charge N) que la tige précédente ($\mathbf{\epsilon}_1 = \mathbf{\epsilon}_2$). a- Rappeler la loi de Hooke :			•••••	
2°) On remplace le matériau de la tige par un autre de désignation $A2$ On désire que celle-ci ait le même allongement (sous la même charge N) que la tige précédente ($\mathbf{\epsilon}_1 = \mathbf{\epsilon}_2$). a- Rappeler la loi de Hooke :		Г.		1
On désire que celle-ci ait le même allongement (sous la même charge N) que la tige précédente $(\epsilon_1 = \epsilon_2)$. a- Rappeler la loi de Hooke :		a	_{min} =	
$(\epsilon_1 = \epsilon_2).$ a- Rappeler la loi de Hooke :	2°) On remplace le matériau de la tige par un autre de désignation $A2$			
a- Rappeler la loi de Hooke :	On désire que celle-ci ait le même allongement (sous la même charge N	N) que la tige précéd	ente	
b- Donner l'expression de $\mathbf{\epsilon_1}$ et $\mathbf{\epsilon_2}$ respectivement en fonction de σ_1 , E_1 , σ_2 et E_2 . $\mathbf{\epsilon_1} = \dots \qquad , \mathbf{\epsilon_2} = \dots \qquad \qquad 1$ c- Calculer la section $\mathbf{S_2}$ de cette tige. On donne dans le tableau ci-contre les modules de \mathbf{YOUNG} . $\mathbf{Module\ de\ Young\ (N/mm^2)}$ $\mathbf{A1} \qquad \mathbf{E_1} = 2,1 \ 10^5$	$(\varepsilon_1 = \varepsilon_2).$			
b- Donner l'expression de $\mathbf{\epsilon_1}$ et $\mathbf{\epsilon_2}$ respectivement en fonction de σ_1 , E_1 , σ_2 et E_2 . $\mathbf{\epsilon_1} = \dots \qquad , \mathbf{\epsilon_2} = \dots \qquad \qquad 1$ c- Calculer la section $\mathbf{S_2}$ de cette tige. On donne dans le tableau ci-contre les modules de \mathbf{YOUNG} . $\mathbf{Module \ de}_{\mathbf{Young}} \\ \mathbf{N/mm^2})$ $\mathbf{E_1} = 1,4 \ 10^5$	a- Rappeler la loi de Hooke :			0.5
c- Calculer la section S_2 de cette tige. On donne dans le tableau ci-contre les modules de YOUNG. Module de Young (N/mm²) A1 $E_1=2,1\ 10^5$ $E_2=1,4\ 10^5$	b- Donner l'expression de $\mathbf{\epsilon_1}$ et $\mathbf{\epsilon_2}$ respectivement en fonction de σ_1 ,	E_1 , σ_2 et E_2 .		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\epsilon_1 = \ldots \qquad , \epsilon_2 = \ldots \ldots$			1
$ \begin{array}{c c} & Young \\ (N/mm^2) & \\ \hline & A1 & E_1 = 2,1 \ 10^5 \\ \hline & E_2 = 1,4 \ 10^5 \\ \end{array} $	${f c}$ - Calculer la section ${f S}_2$ de cette tige. On donne dans le tableau ci-contr	re les modules de Y (OUNG.	
$ \begin{array}{c c} & Young \\ (N/mm^2) & \\ \hline & A1 & E_1 = 2,1 \ 10^5 \\ \hline & E_2 = 1,4 \ 10^5 \\ \end{array} $				
$E_2 = 1,4 \ 10^5$			Young	1
$ \mathbf{E}_{2}=1,4 \cdot 10^{\circ} $		A1	$\mathbf{E}_1 = 2,1 \ 10^5$	
		A2.	$\mathbf{E_2} = 1,4 \ 10^5$	
		112		

PAGE 3/5

III les fonctions logiques universelles (5.5 pts)

Système Barrière automatique

Ce système est utilisé par le service de transports marin (voir figure).

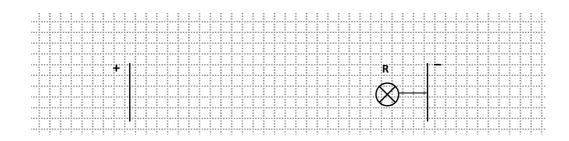
L'accès au bac n'est autorisé que si la barrière est en haut. A la fin de la levée de barrière, une lampe verte **(V)** s'allume pour indiquer au conducteur que le passage est *autorisé*.

Lorsque le passage est *interdit* la lampe verte s'éteint et une lampe rouge(R) s'allume.

Le fonctionnement de la lampe dépend de trois capteurs \mathbf{x} , \mathbf{y} et \mathbf{z} non représentés.

Travail demandé

1) On donne la table de vérité traduisant le fonctionnement de lampe rouge (R)


Х	у	Z	R
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

a) A partir de la table de vérité, écrire l'équation logique définissant le fonctionnement de la lampe (R).

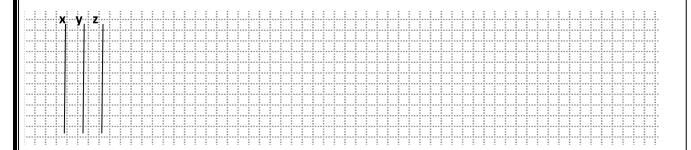
b) Simplifier l'équation de **(R)** initialement trouvée.

.....

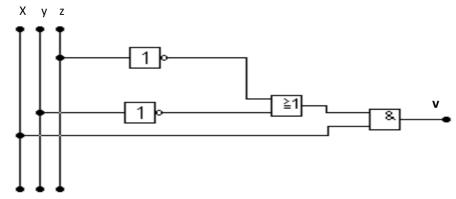
c) Sachant que l'équation simplifiée est $\mathbf{R} = \bar{y} \cdot z + x \cdot \bar{z}$ Compléter le schéma électrique à contacts.

0.75

0.75


d) Donner le nombre de différentes portes logiques nécessaires pour réaliser la fonction (R), après la simplification.

portes logiques **NON.**


- portes logiques **ET.**

- portes logiques **OU.**

 ${\bf e}$) Tracer le logigramme de ${\bf R}$ en utilisant les symboles américain

2) On donne le logigramme traduisant le fonctionnement de lampe verte(V)

a) Déduire l'équation de sortie de lampe verte (V).

V=.....

b) compléter la table de vérité traduisant le fonctionnement de la lampe V

X	y	Z	v
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

0.75

0.75

0.75

0.75