	L.R.Tde Métlaoui		Année scolaire : 2	2004-2005	
	TECHNOLOGIE				
	<u>DEVOIR DE SYNTHÈS</u>	SE N°3			
No	om : Prénom :	N° :	classe :2°AS	Soudani .S	
	Système : Distributeur de boissons				
- L -	Mise en situation Un distributeur de boissons permet de livrer au consommateur - De l'eau réfrigérée - De la menthe à l'eau, - Du citron à l'eau.		E GE E	Equation (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	

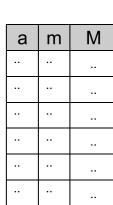
La sélection du produit se fait à l'aide d'un pupitre à 3 boutons

S1 (eau)

S2 (menthe)

S3 (citron).

Schéma de principe :


TRAVAIL DEMANDE

I°) FONCTIONS LOGIQUES

- $1\,^{\circ}$) Le système est équipé d'un moto- compresseur commandé par les boutons a et m, assurant le fonctionnement suivant :
- A <u>l'arrêt</u> "m" et "a" ne sont pas actionnés.
- On actionne "m" seulement le moto- compresseur se met en <u>marche</u>.
- On relâche "m" le moto- compresseur continue à fonctionner.
- On actionne "a" le moto- compresseur s'arrête.
 On relâche "a" le moto- compresseur reste à l'arrêt.
- L'action simultanée sur "m" et "a" arrête le moto- compresseur.

a°) Compléter le tableau de fonction moto-compresseur.	nnement correspondant au foi (1pt)	nctionnement du
b°) Attribuer un nom à la fonction	trouvée (0.5 pt)	

b°) Attribuer un nom à la fonction trouvée(0.5 pt)
c°) Ecrire l'expression en " NOR " de la sortie KM= a.(m+K) (1 pt) KM =
c°) Tracer son logigramme en "NOR: (0.5 pt) a m k

- Do	e la men u citron	ithe à l'e à l'eau ,	on appi	appuie uie sur	sur a et b . a et c . sortie R ".	b°) Ecrire l'équation logique de la sortie " R " . (1 pt) R =
	а	b	С	R		$\overline{b} + b.\overline{c} = \overline{b} + \overline{c}$ (0.5 pt)
	0	0	0			R =
	0	0	1		(1 pt)	
	0	1	0			3°) On considère que l'interdiction de livraison de boisons est
	0	1	1			signalée par le voyant rouge " ER ", ayant pour équation logique simplifiée : ER = ā + b.c
	1	0	0			a°) *Déduire l'équation logique (EV) permettant
	1	0	1			l'autorisation de livraison de boissons EV =
	1	1	0			* En utilisant les théoremes de Demorgans ,simplifier l'équation de EV sachant que :(b+c)=1
	1	1	1			$\mathbf{EV} = \dots \qquad (0.5 \text{ pt})$
	b c	icuro rog	5rque0 e.	Susc	s à deux entrées (1	* Tracer le schéma à contact de ER: +
		xpressio		AND d	le la sortie ER :	(1 pt)
R * Des	eprésen	iter le lo			a sortie $\mathbf{E}\mathbf{R} = \overline{\mathbf{a}} +$	b.C en utilisant uniquement :
4°) On co	onsidère	le logigi	ramme	suivant: (2 pts)
a	b c	≥1		≥1 0-		≥1

≥1

<u>Déterminer l'equation de sortie S</u>:

