

2^{ème} Sciences: Sc₇
Durée: 2heures

Date : le 02 / 03/ 2009

Coefficient : 4

Devoir de Synthèse N°2 Mathématiques

Exercice N°1: (6 points)

Soit (U_n) la suite définie sur $\mathbb N$ par : $\begin{cases} U_0 = 2 \\ U_{n+1} = 2U_n + 2n - 1 \end{cases}$; pour tout $n \in \mathbb N$

1) Calculer U_1 et U_2 .

Justifier alors que la suite (U_n) n'est ni arithmétique ni géométrique.

- 2) On définie la suite (V_n) sur \mathbb{N} par : $V_n = U_n + 2n + 1$.
 - a Montrer que (V_n) est une suite géométrique de raison 2 . Puis déterminer son premier terme V_0 .
 - b Calculer $S = V_0 + V_1 + V_2 + \dots + V_{15}$
 - c Exprimer V_n , puis U_n en fonction de n.
- 3) On considère la suite arithmétique (W_n) définie sur \mathbb{N} par : $W_n = 2n + 1$
 - $a \text{Calculer S'} = W_0 + W_1 + W_2 + \dots + W_{15}$
 - b En déduire la valeur de S''= $U_0 + U_1 + U_2 + \dots + U_{15}$

Exercice N°2: (3 points)

Soit (u_n) une suite <u>arithmétique</u> définie sur \mathbb{N} tel que : $u_5 = 13$ et $u_5 + u_6 + \dots + u_{24} = 830$

- 1) Déterminer u_{24} puis la raison r de (u_n) .
- 2) On prend r = 3
 - a Exprimer u_n puis u_{3n} en fonction de n.
 - b Déterminer n sachant que $u_n + u_{n+1} + \dots + u_{3n} = 50$.

Exercice N°3: (5 points)

1) Soit ABC un triangle directe rectangle en A et tels que : AB = 2AC.

Soit la rotation **indirecte** R de centre A et d'angle $\frac{\pi}{2}$.

- a Construire le point I image de C par R.
- b Montrer que I est le milieu de $\lfloor AB \rfloor$
- 2) a Construire le point B' image de B par R.
 - b Montre que BC = B'I et que $(BC)\perp (B'I)$.
- 3) Soit J = A * B'

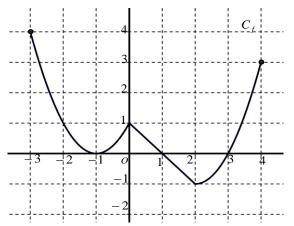
Déterminer R(I). (Justifier votre réponse)

Feuille à rendre avec la copie

Exercice N°1: (6 points)

 \mathbf{I} – On muni le plan d'un repère orthogonal $(O; \overrightarrow{OI}, \overrightarrow{OJ})$

La courbe ζ_f ci-contre représente une fonction f



Les réponses seront données avec la précision permise par le graphique.

- 1) Déterminer le domaine de définition de f: $D_f = \dots \dots$
- 2) Cocher la bonne réponse

a – Le nombre 3 a pour image :

 $\Box 4$

 $\Box 0$

 \Box -1

b – Le minimum de f sur [-3;4] est

 $\square 0$

 $\bigcap -1$

 \square 2

c – Le minimum de f sur [-3;4] est atteint pour x =

 \square 2

 \square 0

 \Box -1

d – Soit A un point de ζ_f alors :

 $\Box A(1;-2)$

 \Box A(2;-1)

 $\Box A(-2;1)$

e – On a pour tout $x \in [-1;2]$:

 $\Box f(x) \ge 1$

 $f(x) \le 1$

 $\Box f(x) \le 2$

3) a – Compléter le tableau de variation de f sur [-3;4]

b - Comparer: f(-1,5) f(-2) et f(2,5) f(3,5)

4) a - L'équation f(x) = 0 a pour solution(s) : $S_{IR} = \dots$

b – L'inéquation f(x) < 0 a pour solution(s) : $S_{IR} = \dots$

 \mathbf{II} – La courbe ci-contre, est une partie de la représentation graphique d'une fonction g définie sur [-3;3]

Compléter cette représentation graphique sachant que : *g* est une fonction **paire**.

