<u>Lycée secondaíre</u> : ALI BOURGUIBA KALAA KBIRA			<u>Année scolaire</u> : 2011 - 2012		
<u>Prof</u> : MAATALLAH	<u>Devoir de synthèse n°2</u>			<u>Classe</u> : 2S 1-2-3-4	
<u>Epreuve</u> : Mathématíques		<u>Date</u> : 06-03 - 203	12 <u>Du</u>	<u>Durée</u> : 2 heures	

Exercice nº 1: (3points)

Pour chaque question une seule réponse est correcte. Relever cette réponse

1) La courbe (C_q) : $y = \sqrt{x+5}$ est l'image de la courbe (C_f) : $y = \sqrt{x}$, dans un R.O.N par :

a) $t_{-5\vec{l}}$

b) $t_{5\vec{l}}$

c) t_{5}

2) Soit f une fonction définie sur [-4, 5] par : $f(x) = x^2 - 6$, alors on a :

a) *f* est paire

b) *f* est impaire

- c) f est ni paire ni impaire
- 3) Soit f la fonction définie sur \square par $(x) = x^2 2x + 3$, alors on a :

a) f est croissante sur $[0,+\infty[$

b) f est décroissante sur $]-\infty$, 2]

c) f est croissante sur $[1, +\infty[$

Exercice nº 2: (7 points)

Soit ABCD un carré de centre . Soit (ζ) le cercle circonscrit au carré ABCD et I le milieu de segment [AB].

- 1) Soit h l'homothétie de centre C et de rapport 2.
 - a) On pose E = h(D) et = h(B). Construire E et F.
 - b) Montrer que *A* est le milieu du segment [*EF*].
- 2) Soit h' l'homothétie de centre F qui transforme E en A.
 - a) Déterminer le rapport de l'homothétie h'.
 - b) Déterminer h'(C). En déduire h'(D).
- 3) On désigne par G le projeté orthogonal de B sur (EF). Montrer que h'(A) = G.
- 4) On pose $(\zeta_1) = h(\zeta)$ et $(\zeta_2) = h'(\zeta_1)$.
 - a) Construire (ζ_1) et (ζ_2) .
 - b) Montrer que OGBC est un parallélogramme.

Exercice nº 3: (10 points)

Soit $(0, \vec{i}, \vec{j})$ un repère orthonormé du plan et f la fonction définie par : $f(x) = \frac{3}{x}$

- 1) a) Etudier la parité de f et donner son tableau de variation .
 - b) Tracer (C_f) , la courbe de f, dans (O, \vec{i}, \vec{j}) .
- 2) Soit la fonction g définie par : $g(x) = \frac{3-3x}{x}$ et (C_g) sa courbe dans (O, \vec{i}, \vec{j}) .
 - a) Tracer (\mathcal{C}_g) à partir de (\mathcal{C}_f).
 - b) Résoudre graphiquement l'équation : g(x) = 0 et $g(x) \le -4$
- 3) Soit la fonction h définie par : $h(x) = \frac{|3-3x|}{x}$ et (C_h) sa courbe dans (O, \vec{l}, \vec{j}) .
 - a) Tracer , à partir de (C_g) , la courbe (C_h) .
 - b) Donner graphiquement le tableau de variation de \boldsymbol{h} .
 - c) Résoudre, par le calcul: h(x) + x 1 = 0

Il sera tenu compte de la rédaction et la bonne présentation de la copie.

