
Le dipôle générateur

I- Rappel:

La caractéristique intensité tension d'un dipôle générateur est une droite décroissante ne passant pas par l'origine.

La loi d'Ohm s'écrit:

U = E - rI

Remarque:

- Cette relation est applicable pour un générateur réel.
- Si r =0, U=E c'est le cas d'un générateur de tension idéal, \forall I, U=E

II- Puissance et énergie électrique :

1) Puissance électrique :

$$P = UI \Rightarrow P = (E - rI) I = EI - rI^{2}$$

 $EI = UI + rI^{2} \Rightarrow P_{t} = P_{f} + P_{i}$

- $ightharpoonup P_u = U \ I$: puissance électrique fournie par le générateur au circuit extérieur.
- $ightharpoonup P_t = E\ I$: puissance chimique ou mécanique transformé par le générateur.
- \triangleright Pj = rI²: puissance dissipée par effet joule.

2) Energie électrique mise en jeu :

$$E = UI \times \Delta t \Rightarrow E = (E - rI) \times \Delta t \times I = EI \times \Delta t - rI^{2} \times \Delta t$$

$$EI \times \Delta t = UI \times \Delta t + rI^{2} \times \Delta t \Rightarrow E_{t} = E_{f} + E_{j}$$

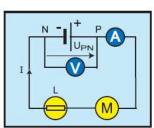
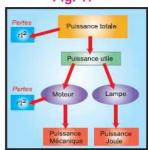



Fig. 17

E. I.
$$\Delta t = \mathcal{F}_{u}$$
. $\Delta t + r.l^{2}$. Δt

Cette relation traduit en fait le principe de conservation de l'énergie ; en effet :

- **E.I.Δt** est l'énergie électrique totale engendrée par les transformations chimiques qui ont lieu dans la pile (ou par conversion de l'énergie mécanique dans la génératrice) ; cette énergie est égale à la somme de deux termes :
- Le terme r.l².∆t : c'est l'énergie consommée par effet Joule dans la résistance interne de la pile et responsable de l'élévation de sa température.
- Le terme \mathcal{G}_{u} . $\Delta t = U_{PN}$. I. Δt correspond à l'énergie du générateur fournie au reste du circuit extérieur. C'est l'énergie utile et le terme $\mathcal{G}_{u} = U_{PN}$. I est la puissance utile disponible aux bornes du générateur.

3) Le rendement :

Définition

Le rendement ρ d'un générateur qui débite dans un circuit est le rapport de la puissance utile P_u à la puissance totale E . I générée.

$$\rho = \frac{\mathcal{P}_u}{E.I} \implies \rho = \frac{E.I - r.I^2}{E.I} \quad \text{en divisant par I}$$

$$\rho = \frac{E - r.I}{E} = 1 - \frac{r.I}{E}; \quad \text{r étant positif, on a : r.I < E et} \quad \boxed{\rho < 1}$$

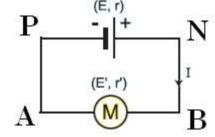
Le rendement ρ est un nombre sans unité et, pour le générateur réel, il est toujours inférieur à 1 ; c'est essentiellement la résistance interne qui fait chuter le rendement d'un générateur.

4) Le courant de court-circuit :

On peut calculer l'intensité I_{∞} à partir de l'équation (1) en écrivant U_{PN} = 0, ce qui équivaut à mettre en court-circuit les bornes du générateur :

$$E - r. I_{cc} = 0 \Rightarrow I_{cc} = \frac{E}{r}$$

Attention


Dans la pratique, l'intensité lcc ne peut être déterminée que graphiquement (ou par le calcul) car il est dangereux de court-circuiter un générateur avec un ampèremètre (dipôle dont la résistance est pratiquement nulle); d'autre part, dans les piles ordinaires, si l'intensité débitée devient trop élevée, la caractéristique n'est plus linéaire et la pile chauffe excessivement. Dans ces conditions l'intensité réelle de court-circuit I_{max} est généralement inférieure à I_{cc}.

Un générateur (E,r) est branché aux bornes d'un moteur (E',r'). Faire un bilan énergétique et en déduire l'intensité I qui circule dans le circuit.

On donne:

E = 12V; E' = 9V; $r = 5\Omega$ et $r' = 10\Omega$.

Solution:

La puissance fournie par le générateur au reste du circuit c'està-dire la puissance disponible est égale à :

$$\mathcal{F}_{u} = U_{PN}. I = E . I - r. I^{2}$$

La puissance reçue par le moteur est $\mathscr{F}_m = U_{AB}$. I = E'. I + r'. I^2 Le principe de conservation de l'énergie impose que la

puissance fournie est égale à celle qui est reçue, donc que :

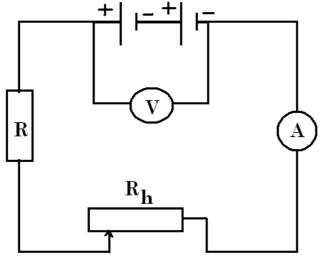
$$\mathcal{F}_{u} = \mathcal{F}_{m}$$
 d'où :

 $\mathcal{J}_u = \mathcal{J}_m$ d'où : E . I – r. I² = E' . I + r'. I² et, en divisant par I de part et d'autre:

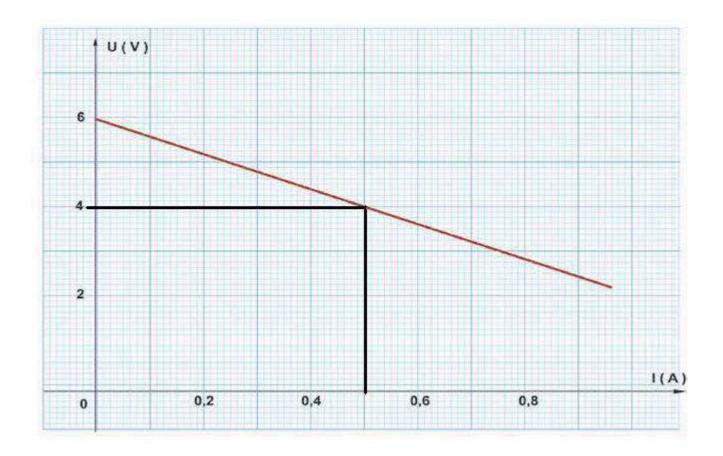
$$E - E' = (r + r')I$$
 ce qui donne $I = \frac{E - E'}{r + r'}$.

Application numérique I = 0,2A

Retrouver I en utilisant les lois d'Ohm


III- Association de dipôle générateur :

1) Association en série :


Le démarreur d'un camion fonctionne sous une tension continue de 24 V. Or on ne dispose que de batteries de 6 V et de 12 V. Aider le mécanicien à résoudre son problème.

Le circuit série forme par deux piles (P_1) et (P_2) , un dipôle résistor de résistance $R=10~\Omega$, un rhéostat et un ampèremètre. Les forces électromotrices de (P_1) et (P_2) sont respectivement $E_1=1,5~V$ et $E_2=4,5~V$. Les résistances internes sont respectivement $r_1=1~\Omega$ et $r_2=3~\Omega$.

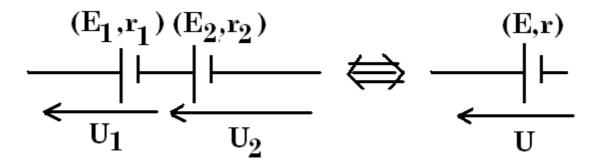
Un voltmètre est placé aux bornes des piles en série comme l'indique le schéma suivant :

Les piles sont dites montées en série lorsque <u>le pôle positif de l'une est relie au pôle négatif</u> <u>de l'autre</u>. L'expérience à permis de tracer la courbe suivante :

A partir de la caractéristique de l'association en série des deux générateurs.

- Déterminer E comparer la à E_1 , E_2 et r comparer la à r_1 , r_2 .
- Conclure.

Le générateur (G) équivalent a deux générateurs (G₁) et (G₂) montés en série est caractérisé par :


■ Une force électromotrice égale à la somme des forces électromotrices des deux générateurs :

$$\mathbf{E} = \mathbf{E_1} + \mathbf{E_2}$$

■ Une résistance interne égale a la somme des résistances internes des deux générateurs :

$$\mathbf{r} = \mathbf{r}_1 + \mathbf{r}_2$$

Démonstration:

- 1) Appliquer la loi des mailles.
- 2) Appliquer la loi d'Ohm pour chaque générateur.
- 3) Déduire une relation entre E, E_1 , E_2 r, r_1 et r_2

Solution:

1)
$$U = U_1 + U_2$$

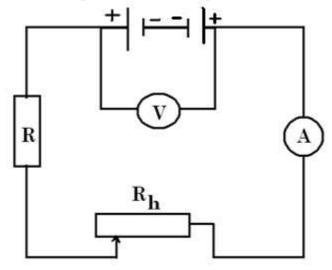
2)
$$U = E - r I$$
; $U_1 = E_1 - r_1 I$ et $U_2 = E_2 - r_2 I$

3)
$$\frac{E - rI = E_1 - r_1I + E_2 - r_2I \Rightarrow E - rI = E_1 + E_2 - (r_1 + r_2)I }{Par identification E = E_1 + E_2 et r = r_1 + r_2}$$

Généralisation:

Soit n dipôles générateurs de f.é.m. respectives E_1 , E_2 , E_3 E_n et de résistances internes respectives r_1 , r_2 , r_3 r_n associés en série.

On aura:


$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{E}_{i} \quad \text{et} \quad \mathbf{r} = \sum_{i=1}^{n} \mathbf{r}_{i}$$

2) Association en série opposition :

Le circuit série formé par deux piles, un dipôle résistor de résistance $R=10~\Omega$, un rhéostat et un ampèremètre. Les forces électromotrices des deux piles sont égales a $E_1=1,5~V$ et $E_2=4,5~V$, les résistances internes sont respectivement égales à $r_1=1~\Omega$ et $r_2=2~\Omega$.

Un voltmetre branché aux bornes des deux piles comme l'indique le schéma suivant :

Les piles sont dites <u>montées en opposition</u> lorsque le **pôle** positif de l'une est relie au **pôle** positif de l'autre.(ou l'inverse)

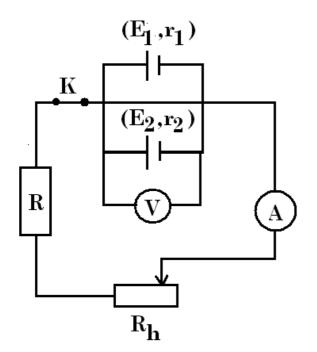
L'expérience à permis de tracer la courbe suivante :

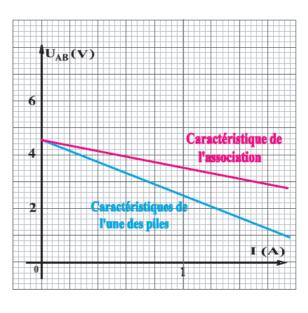
A partir de la caractéristique de l'association en série des deux générateurs.

- Déterminer E comparer la à E_1 , E_2 et r comparer la à r_1 , r_2 .
- Conclure.

Le générateur (G) équivalent a deux générateurs (G_1) et (G_2) montés <u>en série opposition</u> est caractérisé par :

■ Une force électromotrice égale à la somme des forces électromotrices des deux générateurs :


$$\mathbf{E} = |\mathbf{E}_2 - \mathbf{E}_1|$$


■ Une résistance interne égale a la somme des résistances internes des deux générateurs :

$$\mathbf{r} = \mathbf{r}_1 + \mathbf{r}_2$$

3) Association en parallèle ou dérivation :

Le montage de la figure ci-contre ou les deux piles sont identiques $E_1 = E_2$ et $r_1 = r_2$.On a tracé, sur le même graphe, la partie de la caractéristique intensité-tension de l'association des deux piles et celle d'une des piles, lorsque U > 0.

A partir des caractéristiques de l'association en dérivation des deux générateurs.

- Déterminer E comparer la à E_1 , E_2 et r comparer la à r_1 , r_2 .
- Conclure.

Le générateur G équivalent a deux générateurs G₁ et G₂ identiques montes en parallèle est caractérisé par :

- \triangleright Une force électromotrice égale a celle de l'un des générateurs : $E = E_1 = E_2$.
- \triangleright Une résistance interne égale a la moitie de celle de l'un des générateurs : $r = r_1/2 = r_2/2$

Généralisation:

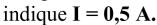
L'association en parallèle de n piles identiques (E, r) est équivalente à une pile qui aurait pour f.é.m. E et pour résistance interne r/n

L'association en parallèle de n piles de f.é.m. identiques E est équivalente à une pile qui aurait pour f.é.m. E et pour résistance interne r équivalente aux résistances internes montées en parallèles.

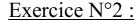
Remarque:

- > Cette association débite, dans le même circuit extérieur, un courant d'intensité plus importante qu'un seul générateur.
- Pour une même intensité de courant débitée dans un circuit extérieur, la perte d'énergie par effet joule par cette association est plus faible que celle par un seul générateur.

Exercice d'application:

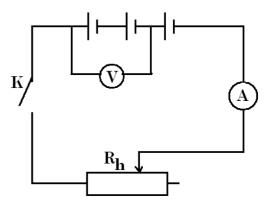

Exercice N°1:

Un circuit électrique comprend :


- > Trois piles identiques montées en série.
- ➤ Un rhéostat de résistance R_h réglable.
- ➤ Un interrupteur (K).
- ➤ Un ampèremètre (A) et un voltmetre (V).

Lorsque l'interrupteur (K) est ouvert, le voltmetre indique 9V.

Lorsque l'interrupteur (K) est ferme, le voltmetre indique 8V et l'ampèremètre



- a- Déterminer la force électromotrice E de chaque pile.
- b- Calculer la résistance interne r de chaque pile.
- c- Déterminer la résistance RH du rhéostat

La caractéristique intensité-tension d'une association de piles identiques en parallèle passe par les deux points A (1A, 7,5 V) et B (2A, 6 V). Entre ces deux points la caractéristique est linéaire.

- 1- Déterminer la f.é.m. E et la résistance interne r de cette association.
- 2. Déterminer le nombre de piles formant cette association sachant que chaque pile est caractérisée par une f.é.m. 1,5 V et de résistance interne 0,9 Ω .

