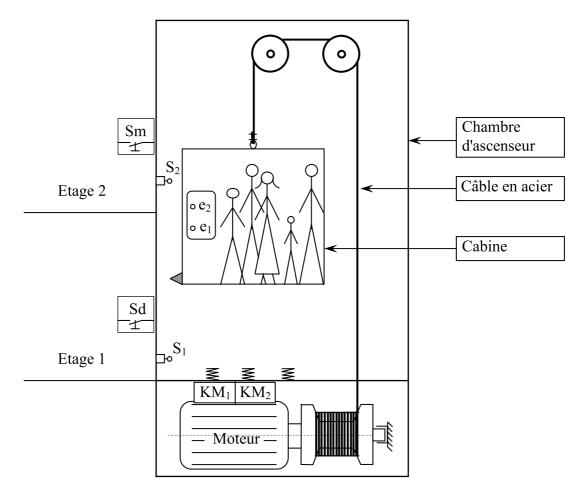
L.S.EZZOUHOUR KASSERINE

TECHNOLOGIE DES SYSTEMES TECHNIQSUES

DEVOIR DE SYNTHESE N° 2

A.S:2009/2010

Prof: RHIMI Jalel


Niveau: 2^{éme} Sc

Durée: 120 mn

Système: ASCENSEUR A DEUX NIVEAUX

L'ascenseur à deux niveaux est un système automatisé qui sert à transférer les personnes d'un niveau à un autre. Il est constitué essentiellement par:

- Un moteur électrique M à deux sens de marche commandé par deux contacteurs KM_1 (pour la montée) et KM_2 (pour la descente).
- Deux boutons poussoirs d'appel intérieur e₁ et e₂.
- Deux boutons poussoirs d'appel extérieur **Sm** et **Sd**.
- Deux capteurs de position S1 et S2.

Fonctionnement:

- ✓ La montée de la cabine est assurée par le contacteur KM_1 qui ne fonctionne que si la cabine est à l'étage1 ($S_1 = 1$), et au moins l'un des deux boutons poussoir Sm ou e_2 est actionnés (Sm = 1 ou $e_2 = 1$)
- ✓ La commande de la descente de la cabine répond à l'équation logique suivante:

$$KM_2 = S_2 \cdot (S_d + e_1)$$

TRAVAIL DEMANDE:

	⇒ ACTIVI	TE I : COMI	PORTEMEN	T DES MATI	ERIAUX (1	+1,5+(1+1)+	2+2).	
1)	Quel est le type de sollicitation du câble en acier (mettre une croix dans la case correspondante).							
	Compress	ion						
	Traction							
2)		tiquettes suivar ngement pour c	•	eches.	σ	$= E \Delta L / L_0$		
	Conc	lition de résista	nce			$Re = Fe / S_0$		
	L	imite élastique			F	Rpe = Re/s		
		Loi de Hooke			-	$Rr = Fr / S_0$		
	Résistanc	e pratique à l'ex	ktension		A%	$= (Lu - L_0) /$	Lu	
	Rési	stance à la rupt	ure			$\sigma \leq Rpe$		
La	condition de	résistance est :	Vérifiée Non vérifié	i in `	Mettre une cro	ix dans la case	correspondante)	
4)		tion de résistand qu'il résiste en		•		`	e diamètre du oix du diamètre).	
•••••				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •							
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
Soit	D	=mr	n					
Le		s le marché son	•			1.0	20	
	4 mm	6 mm	8 mm	10 mm	12 mm	16 mm	20 mm	

> ^	CTIVITE	т. (I ES EO	NCTIONS LOGIQUES
А	CIIVIII	(MCTIONS EOGIQUES
nart	ie: ((1+	1) + 2 +	2)	
				e (page 1/1), compléter le tableau suivant et déterminer l'équa
	ue simplit			(page 1/1), completel le taoleau survant et acterminer l'équa
0 1	. 1	_		
Sm	$\mathbf{e_2}$	S1	KM ₁	$KM_1 = \dots$
0	0	0		
1	0	0		
0	1	0		
1	1	0		
0	0	1		
1	0	1		
0	1	1		
1	1	1		
Tradı	uire l'équa	ation log	ique de KM	I_1 en logigramme.(utiliser les portes logiques de base à deux
entré		ation log	rique de KM	I ₁ en logigramme.(utiliser les portes logiques de base à deux

2^{éme} partie : (1,5		
	ité logique suivante : S2)√(Sd√e1)	
2) Déterminer le	complément de KM ₂ (appliquer le th	éorème de DEMORGAN).
$\overline{KM_2} = \dots$		
	que $\overline{KM_2} = S2 [(Sd Sd) (e1 e)]$	1)]
3) a) Démontrer q		
3) a) Démontrer q		
3) a) Démontrer q		
	l'équation logique de KM ₂ par un log	gigramme, en utilisant que des opérateurs NAND