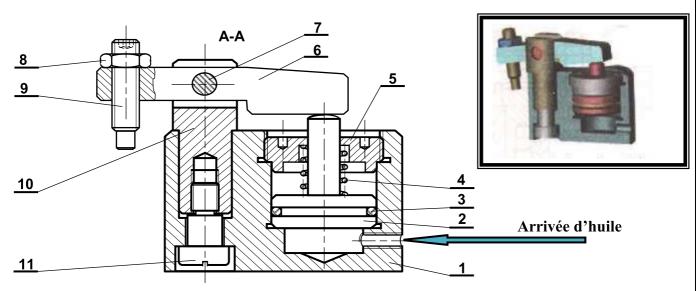

REPUBLIQUE TUNISIENNE Ministère de l'éducation L.S.Cherarda Le 08/03/2013

Nom:....

TECHNOLOGIE Devoir de synthèse n°2


Durée: 2 Heures Classes: 2ème Sciences

Prénom:....

<u> ™Mise en situation</u>:

Le dessin d'ensemble suivant représente une bride hydraulique utilisée sur la table d'une machineoutil, assure le blocage rapide d'une pièce à usiner.

Fonctionnement:

L'arrivée d'huile sous pression dans la chambre du corps (1) pousse le piston (2), qui transmet l'effort à la vis (9) par l'intermédiaire du levier (6) et la chape (10).

Un réglage par l'écrou (8) de la vis (9) permet de bloquer des pièces de différentes dimensions.

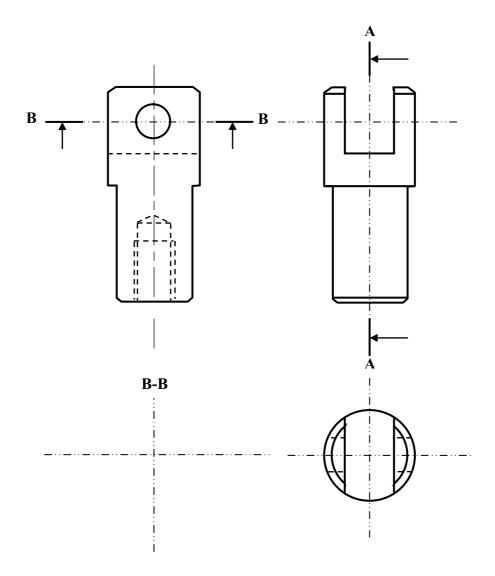
➤ Travail demandé :

I- Lecture du dessin d'ensemble :(5 pts)

1: Sur le dessin d'ensemble ci-dessus, colorier les parties visibles des pièces suivantes : (2pts)

Repère de la Pièce	2	5	6	10
Couleur	Rouge	Bleu	Vert	Jaune

2: Compléter le tableau suivant : (3 pts).


Questions	Réponses
a/Quel est le mouvement d'entrée de la bride hydraulique. b/Par quoi est obtenu ce mouvement.	
c/Quel est le rôle du joint torique (3)	
d/Quel est le rôle du ressort (4)	
e/Quel est le rôle des deux petits trous du couvercle (5).	
f/Quel est le mouvement effectué par le levier (6).	

om:	. Prénom :	 $\mathcal{DSN}^{\circ}2$

Sur le dessin d'ensemble ci-dessous on demande de : 1: Reperer les surfaces terminales et les surfaces de liaisons .(1.5pt) 2: Completer les graphes de liaisons des cotes conditions Ja et Jb.(1pt) 3: Tracer la chaine de cote minmale qui installe la cote condition Ja.(0.5pt) 4: Tracer la chaine de cote minmale qui installe la cote condition Jb.(1pt) **A-A **A-A** **ST* ST ST	<u> </u>
2 : Completer les graphes de liaisons des cotes conditions J _a et J _b .(1pt) 3 : Tracer la chaine de cote minmale qui installe la cote condition J _a .(0.5pt) 4 : Tracer la chaine de cote minmale qui installe la cote condition J _b .(1pt) A-A ST	
3: Tracer la chaine de cote minmale qui installe la cote condition J _a .(0.5pt) 4: Tracer la chaine de cote minmale qui installe la cote condition J _b .(1pt) A-A	
A-A SL/ ST	
8 9 10 SL/ ST	
8 9 10 SL/ ST	
9 10 SL/ ST	
10 SL/ ST	
SL/ [///// / // # ff	
SI	
ST	
ST 2	
SL/	
11	
5 : Ecrire les équations donnant les cotes conditions suivantes.(1.5 pt)	
$J_a =$ $J_b =$ $J_{a Max} =$ $J_{b Max} =$ $J_{b min} =$ 6: a/Compléter le tableau suivant : (1.75pt)	
Cote tolerance CN es ei Cote Maximale Cote minimale IT	
$\mathbf{Jb} = 1^{-0.4}$	
-0,1	
n _i =	
$\mathbf{b_1} = \dots +0,1 \qquad 30,2 \qquad 0,1$	
$\mathbf{b_{10}} = \dots $ $\mathbf{b_{10}} = \mathbf{b_{1-b_{10}-b_{11}}}, \text{ calculer } \mathbf{b_{11min}} : (2.25 \text{pts})$	
$\mathbf{b_{10}} = \dots$ $\mathbf{b}/\text{Sachant que } \mathbf{Jb} = \mathbf{b_{1}} - \mathbf{b_{10}} - \mathbf{b_{11}}, \text{ calculer } \mathbf{b_{11}}_{\text{max}} \text{ et } \mathbf{b_{11}}_{\text{min}} : (2.25 \text{pts})$ $\mathbf{b_{11}}_{\text{Max}} = \dots$	
$\mathbf{b_{10}} = \dots$ $\mathbf{b}/\text{Sachant que } \mathbf{Jb} = \mathbf{b_{1}} - \mathbf{b_{10}} - \mathbf{b_{11}}, \text{ calculer } \mathbf{b_{11Max}} \text{ et } \mathbf{b_{11min}} : (2.25 \text{pts})$ $\mathbf{b_{11Max}} = \dots$	
$\mathbf{b_{10}} = \dots$ $\mathbf{b}/\text{Sachant que } \mathbf{Jb} = \mathbf{b_{1}} - \mathbf{b_{10}} - \mathbf{b_{11}}, \text{ calculer } \mathbf{b_{11Max}} \text{ et } \mathbf{b_{11min}} : (2.25 \text{pts})$ $\mathbf{b_{11Max}} = \dots$	
$ \mathbf{b_{10}} = \dots $ $ \mathbf{b_{10}} = \dots $ $ \mathbf{b_{10}} = \mathbf{b_{1-b_{10}-b_{11}}}$, calculer $ \mathbf{b_{11min}} = \dots $ $ \mathbf{b_{11mini}} = \dots $	1
$ \mathbf{b_{10}} = \dots $ $ \mathbf{b_{10}} = \dots $ $ \mathbf{b_{10}} = \dots $ $ \mathbf{b_{110}} = \dots $ $ \mathbf{b_{110}} = \dots $ $ \mathbf{b_{110}} = \dots $ $ \mathbf{b_{1100}} = \dots $)

III- Représentation graphique (6 pts)

- > On donne le dessin de la chape (10) par trois vues incomplètes.
- **➢ On demande** de compléter :(1.5+1.5+2+1)
- -la vue de face
- la vue de dessus.
- la vue de droiteen coupe A-A
- la section sortie B-B

IV_{-}	Comportement	dos	matériaux	. 19) 5 nt	c)

17 - Comportement des materialis. (7.5 pts)
Au cours d'une opération de bridage, l'huile arrive sous une pression $P = 0.5 \times 10^6 \text{ Pa}$ et agit sur le piston (2) de diamètre $d = 150 \text{mm}$. (1Pa = 1N/m ²)
1 : Déterminer la force de poussée du piston $\ \vec{\mathbf{F}}_{\mathbf{P}}\ $. (1pt)

 $\|\vec{\mathbf{F}}_{\mathbf{P}}\| = \dots$

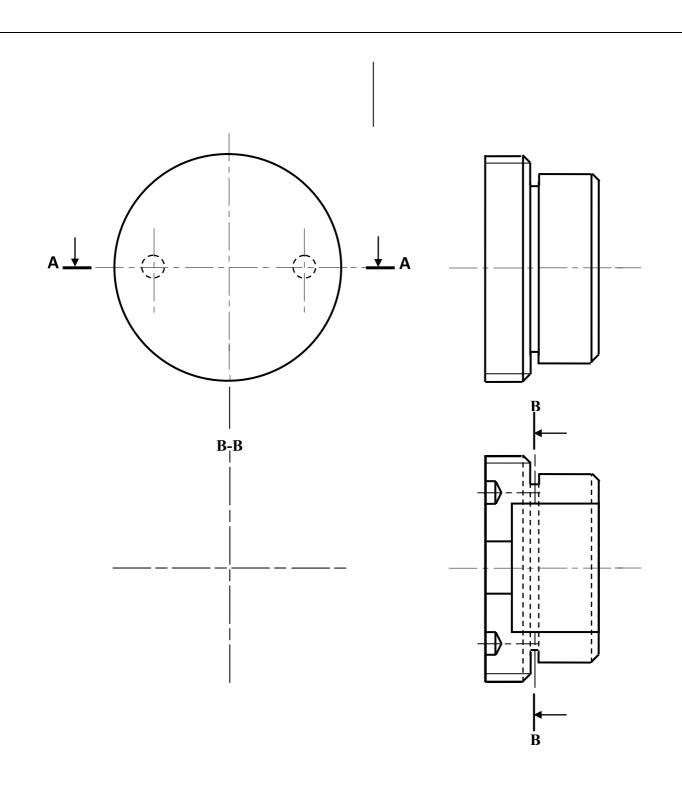
 Nom:
 2ème Sc.

2 : En se référant à l'étude de l'équilibre du levier (6), compléter le tableau suivant.(3pts)

Pièces isolées	Bilan des forces	Déformations	Sollicitations
Piston (2)	-Poids négligé		
A			
B			
В			
Chape (10)	-Poids négligé		
C		•••	
ነተ			
i			
D 🕌			
ı			

3: La chape (10) est soumise à deux actions extérieures appliquées en A et B. Tel que $\ \overrightarrow{FA}\ = \ \overrightarrow{FB}\ = 45 \times 10^3 \text{ N}$. Calculer sa déformation ΔL sachant qu'elle est en acier de module d'Young $E = 2 \times 20$ Données: La chape (10) est de section circulaire de diamètre $E = 20$ de Longueur $E = 40$ mm.	10 ⁵ N/mm ² .(1.5pt)
	•••••
	•••••
	$\Delta \mathbf{l} = \dots$
4 : La tige de piston(2), est sollicitée à la compression sous l'effet de la force F= 60 Section de la tige : S = 115 mm ²	0 daN.
a- Calculer la contrainte normale maximale de traction.	(1,5 pt)
	••••
	σ =
b-Déduire à partir du tableau suivant les matériaux qui conviennent pour que la tige	de piston résiste en

Nuance	S 185	S 235	S 275	S 355
$Re (N/mm^2)$	185	235	275	355
$Rpc (N/mm^2)$				


	• •	 		 • •	 	٠.			••		• •	 		٠.	٠.		٠.	٠.			٠.	٠.		• •	 				 ٠.	٠.				· • •		٠.	٠.	٠.		٠.	• •		
• •	• •	 • •	• •	 • •	 • •	٠.	• •	• •	• • •		• •	 	• •	٠.	٠.	٠.	٠.	٠.	• •		• •	٠.	• •	• •	 • •		• •	• • •	 ٠.	٠.	• •	• • •	• • •		٠.	٠.	• •	٠.	• •	٠.	• •	• •	
• •	• •	 • •	• •	 • •	 ••	٠.	• •	• •	• •		• •	 		٠.	٠.	٠.	٠.	٠.		٠.	٠.	٠.	• •	• •	 • •	٠.	• •	• • •	 ٠.	٠.	• •	• • •		· • •	٠.	٠.	• •	٠.		٠.	• •	• •	
• •	• • •	 	٠.	 • •	 	٠.	٠.		• •	٠.	• •	 ٠.		٠.	٠.	٠.	٠.	٠.		٠.	٠.		٠.	• •	 				 	٠.					٠.	٠.	٠.	٠.	٠.	٠.		• •	

toute sécurité. On adopte un coefficient de sécurité $\hat{s} = 6$.

BONNE CHANCE

(2,5 pt)

4

 Nom:
 2ème Sc.

 $\mathcal{DS}\,\mathcal{N}^{\circ}\!2$